
Fundamentals of discrete-time signals
and systems

442.003 Digital Signal Processing, Laboratory
Winter Term 2023/24

Signal Processing and Speech Communication Laboratory
www.spsc.tugraz.at

Last updated: November 3, 2023

Required equipment:

• PC with netbeans & MATLAB installed

• Raspberry Pi

• Oscilloscope Agilent 54622D

• Signal generator Agilent 33120A

• Headset

• Cables

1 Practical part
Practical part of the work consists of several tasks that should be performed on Raspberry Pi
and some MATLAB simulations. It includes:

1. Frequency response of the embedded digital system.

2. Build-in ADC(DAC).

3. Aliasing and quantization effects.

Experiment 1:
The DSP output noise measurement

1. Start netbeans and load the Unit1/Exp1 project. Build the program and run it. Ensure
that target host is set to the Raspberry Pi!

2. Connect the output of the DSP board to the input of the oscilloscope.

3. On the oscilloscope press Edge button. Trigger on Ext or the channel corresponding to
the output signal from the signal generator (which is not connected yet). Compress the
horizontal axes to 200ms per division.

http://www.spsc.tugraz.at/


2

4. Press Quick meas and set Source to the channel that corresponds to the output from
the DSP board. By pressing corresponding soft key measure the RMS value of the DSP
output signal. If the obtained value still significantly varies, try to obtain better estimate
by compressing the horizontal axis a bit more. Under the assumption that the additive
noise is a zero-mean process, the obtained value equals the estimated standard deviation
σn of the additive noise present at the output of the DSP board and induced by the
connecting cables.

5. Assume the maximum allowed output amplitude to be 1Vpp. Based on the DSP noise
level calculate how many bits out of 16 are then masked by the noise.

Experiment 2:
Measuring the DSP antialiasing filter frequency response.

1. In netbeans, open and load project file Unit1/Exp2. Rebuild it. Make sure that the
program was loaded into DSP’s memory (put attention to the target host!)

2. Connect the output of the signal generator to the input channel of the DSP board.

3. On signal generator set the waveform to a sinusoid by pressing ∼ key. On the signal
generator, set the input frequency to 100Hz and amplitude to 1Vpp (assuming the signal
generator was set up for the input with the high impedance). Press Freq again.

4. In netbeans choose Debug →Run (or press F5; see further information in ).

5. Make sure that the oscilloscope uses the external trigger. To check it, press Edge button
in the trigger section of oscilloscope controls. On the oscilloscope display the check mark
should be at Ext.

6. Switch off the oscilloscope input channel that corresponds to the signal generator. Press
Math button and choose FFT, then Settings. Set Source to the channel that corre-
sponds to the input for the DSP board, Span=20kHz, and Center=10kHz. You should
see one peak at 100Hz. To make sure that the peak appears exactly at 100Hz use cursors.
Press Cursors and set Source=”Math”. Press X1 or X2 soft key and turn ⟳ knob to
adjust the cursors. Press X Y soft key to change cursors to Y–axis and set up Y1 to
the noise level around the peak.

7. By increasing the frequency of the sinusoid from 100Hz, find the frequency at which the
amplitude of the peak disappears below the noise floor. This value stands for the highest
harmonic that passes through the DSP.

8. Set up the signal generator to produce a sweep between 50Hz and the frequency you
estimated in the previous task + some extra bandwidth (just try several different values
(on the order of kHz) to obtain a good visual result). By changing the vertical position
of the waveform on the oscilloscope, place a ground marker at the bottom of the screen
to make only half of the waveform visible.



3

9. Sketch the ”end-to-end” frequency response from the analog input to the analog output
of the DSP.

10. Determine the following values: width of the passband region Wpass [Hz] (measured as
part of the filter’s frequency response that lies within 3dB from the maximum response),
maximum passband gain Gpass

max [dB], and roll-off rate Rroff [db/Hz]. Note, that the
frequency response you see on the oscilloscope’s screen is not in dB scale and the time
axis also has to be converted into frequency scale (according to the start and stop sweep
frequencies set on the signal generator). Make sure you re-label the axes properly before
computing the values.

Experiment 3:
Transfer characteristic of the DSP’s ADC and study of the quanti-
zation noise.

1. In netbeans, stop a program and close all open projects, if any.

2. On the signal generator press the ’Ramp-shape’ button, set frequency to 350Hz and
amplitude to 1Vpp (assuming the signal generator is set up for the input with the high
impedance).

3. Load Unit1/Exp3 project following the known procedure.

4. In netbeans, unwrap the project list and open main.cpp.

5. By default, the loaded program emulates a 1 bit quantizer. As the result, the oscilloscope
will display the original ramp signal from the signal generator and the corresponding 1-bit
quantized waveform at the output of the DSP. You can remove some noise by enabling
averaging in oscilloscope. For that just press Acquire and then select the Averaging
option in the menu.

6. Take a look in the callback function static int paCallback contained in main.cpp.
This function is evaluated once the input frame is filled with FRAMELENGTH=256 sampling
points. Go through the implementation which calculates the total signal’s power enSig
and the arising quantization noise power enErr. What is their unit (Volt2, Volt2/fs with
sampling frequency fs, Watt, …)?

7. Using these plots, determine the amplitude of the input signal that triggers the ADC
to change its state. Plot the appropriate ADC transfer characteristic assuming a two’s
complement code.

8. Similarly, plot the ADC transfer characteristic for 2-bit quantization. To change the
quantization level, open the main.cpp file, find the short MASK=... line, and modify it
according to the remark lines provided in the same file.

9. Estimate the Signal-to-Quantization-Noise Ratio (SQNR) that corresponds to quantiza-
tion levels of 1−, 2−, 3−, and 4-bits. Use the values forwarded in enSig and enErr
variables.



4

10. Plot the SQNR as a function of the number of bits. Predict how the SQNR will change
for 5,6 and more bits. Hint: To do that, plot the SQNR values obtained in the previous
experiments and fit a straight line to these points (linear regression). By extrapolating
the line beyond the 4-bit value we can predict the SQNR behavior for higher number of
bits.

11. Disconnect the signal generator and the oscilloscope from the Raspberry Pi. Connect
a CD player or computer’s sound card line-out to the 3.5 input on RPi. Connect the
headset to the corresponding plug on the RPi. Alternatively, you can use any other
sound source available to you.

12. Using the headset listen to the output sound that corresponds to the 1−, 2−, 3−, and
4-bit quantization levels. Beware of the high volume of the output signals!

A Credits
This document was authored and/or adapted by Dmitriy Shutin and Josef Kulmer.


	Practical part
	Credits

