Discrete Fourier Transform

442.003 Digital Signal Processing, Laboratory
Winter Term 2023/24
Signal Processing and Speech Communication Laboratory
WWW.Spsc.tugraz.at

Last updated: October 17, 2023

Abstract

This note provides a brief review of the Fourier transform for the analysis of discrete-
time signals and systems and a description of practical assignments, which will be per-
formed on a Raspberry Pi. Some tasks are to be performed with the help of MATLAB.
It is assumed that the student has enough theoretical background to perform the prac-
tical part of the work. The review of some aspects of discrete-time signals and systems
provided here is just a quick reminder.

Equipment:
e PC with netbeans IDE & MATLAB installed

Raspberry Pi

Oscilloscope Agilent 54622D

Signal generator Agilent 33120A
Cables

1 Introduction

In signal processing applications we often face the necessity to combine and separate signals.
Sometimes an oscilloscope will clearly show what happens. When you mix signals, however,
the oscilloscope is not very useful in many situations, since the sum of signals is often a messy
thing to look at.

The idea behind the Fourier transform is pretty simple: one can think of signals as of a
sum of sinusoids with different frequencies and phase shifts. This approach can be applied to
a variety of signals (see table , including continuous-time, discrete-time, periodic, aperiodic,
and even N-dimensional signals.

http://www.spsc.tugraz.at/

Discrete Fourier Transform 2

Signal type / Time domain Continuous-time Discrete-time
Periodic signals Fourier series Discrete Fourier transform
Aperiodic signals Fourier transform Discrete-time Fourier transform

Table 1: Fourier analysis framework

2 Overview of Fourier transform family

2.1 Fourier series (FS)

Fourier series are used for periodic continuous-time (analog) signals z(t) with period Ty. There
are several ways to write this transform, but the most common is the two-sided, complex ex-
ponential representation:

, Ty /2
X[k] = T / x(t) e IT gt k=—00...00
—Tp/2

The time signal z(¢) can be computed from the Fourier coefficients X [k] by

x(t) = Z X [k] et (complex form),
k=—o00
or by
Ao S : :
x(t) = > + Z A cos(kwot + @) (trigonometric form),
k=1
- Sm{X[k]}
using A, =2|X[k][, and ¢ =arg(X[k]) = arctan(
’ * Re{ X[k}

and wo = 27/Ty the fundamental angular frequency.

According to these equations we can represent a periodic signal x(t) by a series of coefficients
X[k], or Ay, and ¢y. In the trigonometric form Ay and ¢y, are the amplitude and the phase of
the harmonic signal component with angular frequency w = kwy. In the complex form both
amplitude and phase of the complex harmonic signal componen efhwot with angular frequency
w = kwy are represented by the complex coefficient X [k].

The Fourier series coefficient for k£ = 0, X[0] resp. Ay represents the mean value of x(t), i.e.,
the DC component in the signal (a ‘harmonic’ signal at frequency w = 0). Question: What is
the phase arg(X|0]) resp. o of the DC component? Ay resp. X[1] and X[—1] represent har-
monic components at the fundamental angular frequency wy. Coefficients for |k| > 1 represent
higher harmonics of the signal z(t). Questions: What is the relation between X[k| and X[—k|?
Why do we sum over k = —oco...o0 in the complex form of the Fourier series representation
but only over k =1...00 in the trigonometric form?

'Recall that e/kwot = cos(kwot) + j sin(kwot).

Discrete Fourier Transform 3

2.2 Fourier transform (FT)

The FT is used for aperiodic continuous-time (analog) signals x(¢). The most common way to
express this transform is the two-sided, complex exponential representation:

[e.e]

X (w) = / () e~ dt.

—00

The inverse transform to find the time signal z(t) again, is
1 jwt
z(t) = — | X(w)e'™dw.
2m

According to these equations any time signal x(¢) can be represented by — and perfectly
re-constructed from — the function X (w) in the spectral domain. X (w) is called the Fourier
spectrum of the signal x(t). The Fourier spectrum is a continuous function of angular frequency
w € [—00,00].

e To calculate the exact FT, you need to know x(t) from ¢ = —o0 to t = +oo. This is of
course impossible for real-world applications.

e In most cases of practical interest, X (w) will not be periodic (cf. discrete-time Fourier
transform, below).

2.3 Discrete-time Fourier transform (DTFT)

The DTFT is used for aperiodic, discrete-time or digita]ﬂ signals z[n]. The most common way
to express this transform is

X () = Z x[n] 73",
Here, 0 is the normalized angular frequency, 0 = 2nf/fs, with fs being the sampling rate
of z[n]. Since the term e Vn in the transform is periodic in @, with period 27, also the
resulting spectrum X (e?%) is periodic (with period 27, too). To indicate this periodicity, the
argument of the spectrum is commonly written as €/ (not 6 only). Due to the periodicity, the
Fourier spectrum of a discrete-time signal has to be known only for an interval of length 2,
commonly the fundamental interval § € [—7, 7] is used to represent X (e/%).
The discrete-time signal x[n] can be recovered by

1 r))
x[n] = %/X(eja) eI dp.

e This expression says that we can use the function X (/%) (Fourier spectrum) to represent
the discrete-time signal x[n].

e The spectrum X (e/) is a continuous function in 6.

e The DTFT spectrum is always periodic with the period of 27.

2A digital signal, as used in computers and DSPs, is a quantized discrete-time signal.

Discrete Fourier Transform 4

2.4 Discrete Fourier Transform (DFT)

The DFT is used for periodic, discrete-time or digital signals z[n]. The DFT for a signal with
period N is

N—1
27k
X[k] = zlnje 7N "
n=0
The inverse transform (IDFT) is
L NVl
27k
aln] = — S X[k] SR,
Nz

These equations say that the coefficients X [k] represent the periodic discrete-time signal
xz[n]. Notice, that only N samples of the time signal x[n] are used to compute X[k] (for
k= —00...00), and also only N of the coefficients X[k| are used in the inverse transform.

e A periodic discrete-time signal has a periodic spectrum (just like any other discrete time
signal), i.e., X[k + N] = X[k].

e The X|[k] terms are evenly spaced samples (at 6 = k%’) of the continuous spectrum
X1(e’?) of the signal x1[n] = x[n] for 0 <n < N; xn] =0 for n<0,n>N
(Verify this using the formula for the DTEFT above!).

Fast Fourier transform (FFT)

To represent the time signal we need to compute X[k| for NV values of k, and for each of these
values we must perform N multiplications and N —1 additions, so computing the DFT requires
N (2N —1) arithmetic operations, i.e., it has a computational complexity of O(N?) (order of N?).
However, specifically if N is a power of 2, many of the DFT calculations are redundant. By
carefully re-arranging the order of multiplications and additions, the computational complexity
can be reduced to O(N log, (N)). The resulting algorithm is called fast Fourier transform.
The difference between O(N?) and O(N log, (N)) can be substantial: If N = 1024, and
log, (1024) = 10, the computational complexity of the FFT is only 1% of that of a DFT.

3 Window functions

As noted above the DFT and IDFT are defined for periodic time signals. We may, however, be
interested in a digital representation of the spectrum of non-periodic discrete-time signals. For
time-limited signals, i.e., for signals that differ from zero only for 0 < n < N, we found that
the DFT results in samples of the DTFT. For non-periodic, infinite (or long) time signals we
have to restrict the calculation of the DFT to a number of N samples, meaning that we may
only use a number of L < N signal samples. The procedure to pick only a limited number of
samples from a possibly infinitely long signal is called windowing.

If we bear in mind, that we now calculate a local (short-term) spectral representation, and
that the IDFT will result in a periodic signal, the DFT such can be applied for all discrete-time
signals.

Discrete Fourier Transform 5

3.1 Rectangular window

The simplest way to restrict an infinite time signal to a length of L samples is to multiply the
signal with a window function

wln] = 1 0<n<L,
10 otherwise.

This window function is called rectangular window (for obvious reasons).

Considering that we multiply two signals z[n] and w[n| in the time domain, the corre-
sponding operation in the frequency domain is a (circular) convolution of the spectra X (e/?)
and W(e??). E.g., the spectral line X (e/?) = 27m02,(0 — 6p) of a harmonic signal z[n] =
e%m is transfered to the spectrum of the window function shifted by 6, after windowing:
e?%m[n)o—e2rW (e7(0=%)). To investigate the effects of windowing we thus should also look
at the properties of the Fourier transform of a window function.

win] IW(e®)w(el)
T T T T T 0 T T T
1 - [oXoRoNoNoRoNoNoRoNoRoRoRoRoRoRoNoRoRoN0] - _5_ i
08 . 10 1
15 | 4
0.6 -]
8 201 -
04 - g 25 - .
-30
02 - . 4m/L
-35
0 & -40 !
-5 0 5 10 15 20 25 - /2 0 w2 T
n 0

Figure 1: Rectangular window (L = 20) and corresponding spectrum

As depicted in fig. (1] the rectangular window results in a good frequency resolution due
to the narrow main-lobe. However, the amplitude measurement capabilities are rather poor,
due to the high amplitudes of the side-lobes. Except for self-windowing functions (impulses,
bursts, etc.) the effects of spectral leakage (transfer of spectral energy due to the side-lobes of
the window function Fourier transform) are significant.

The effect of introducing spectral energy at frequencies that are not present in the original
signals spectrum by windowing can also be explained in the time domain: By windowing we
introduce discontinuities in the periodic signal represented by the DF'T coefficients in general.
To reduce spectral leakage window functions that decay in amplitude towards the begin and
end of the window are used.

3.2 Triangular (Bartlett) window
A simple window function that decays towards the ends is the triangular or Bartlett window:

_n=(L-=1)/2
wln| =) (L—1)/2

0<n<L,

otherwise.

Discrete Fourier Transform 6

An example of a triangular window and its spectrum is shown in fig. 2] Notice the lower
amplitude of the side-lobes in the spectrum as compared to that of the rectangular window
(different scale!). For the triangular window of (approximately) the same length, however, we
find a considerably wider main-lobe as for the rectangular window.

win] IW(e)w(e)
T T T T T O T T
r] -10 | g
[0] @
0.8 | N 20 | i
_30 - -
06 | -
@ 40} -
04 | E -50
-60
02 | i
T T -70 8m/(L-1)
0 &4 T T & _80 1 1 1
5 0 5 10 15 20 25 - -2 0 /2 T
n 0

Figure 2: Triangular (Bartlett) window (L = 21) and corresponding spectrum

3.3 Generalized cosine windows

The Blackman, Hamming, Hann (aka. Hanning), and rectangular windows are all special cases
of the generalized cosine window:

n] = A — Bceos(2m%5) + Ccos(4rs) 0<n <L,
YT 0 otherwise.

where A, B, and C' are constants. The window choice is usually task-dependent: the width
of the the main-lobe is inversely proportional to height of the side-lobes. Thus, there is a
trade-off between frequency resolution and reduction of spectral leakage. The Hamming and
Hann windows (fig. [3) are the two-term generalized cosine windows, given by the A = 0.54,
B = 0.46 for Hamming and A = 0.5, B = 0.5 for Hann windows (C' = 0 in both cases). The
Blackman window is a popular three-term window, given by the A = 0.42, B = 0.5, C' = 0.08.

The flat-top window that can be selected for the FFT analysis in the oscilloscope Agilent
54622D is a generalized cosine window with a sum over 5 terms, and A = 1,B = 1.93,C =
1.29, D = —0.388, and F = 0.322.

3.4 Kaiser window

The Kaiser window is an approximation to the prolate-spheroidal window, for which the ratio
of the main-lobe energy to the side-lobe energy is maximized. For the Kaiser window of the
particular length L, the parameter a controls the side-lobe height. For the given a, the side-
lobe height is fixed with respect to the window length.

Discrete Fourier Transform 7

win] IW(e)w(e)
T T T T T 0 T T
1F o%o] 210 F i
Q [0]
0.8 - o o] 20 |]
30 i
06 | g
@ 40| .
0.4 | E -50 B
_60 - -
0 49 (f ? (0PN -80 m 1 [\
-5 0 5 10 15 20 25 - /2 0 2 n
n 0
win] IW(e®)w(el)
T T T T T T
1F o) i
0.8 -]
06 | g o
©
04 .
02}]
ol [95 i
0 1
-5 0 5 10 15 20 25 0
n 0
Figure 3: Hann and Hamming windows (L = 21) and their spectra
win] [W(e®)w(e)
T T T T T
il AT '
0.8 FEEE i
i W
0.6 -) !] o
/ Y ©
o o
04 ; \ .]
;]/ h i \\”‘,f \,r’/\“ F\" ’,"\‘ Ny
0.2 i b i ERRRR R
Juil ol A
0 b aea8 il it S eaad L
-5 0 5 10 15 20 25

Figure 4: Kaiser windows and spectra for L = 21 and o« = 5 (circles and solid lines), and
a = 10 (squares and dashed lines)

To(@) 0<n<lL,
0 otherwise.

Iy(+) is a ‘modified Bessel functions of the first kind’.

Discrete Fourier Transform 8

3.5 Chebyshev window (also Dolph-Chebyshev)

The Chebyshev window minimizes the main-lobe width, given a particular side-lobe height.
It is characterized by an equi-ripple behavior, that is, its side-lobes have the same height.
Examples are given in fig. [

win] IW(E)ywi(e)
T T T T T
Tr AT 1
i n
0.8 |- /Ej/ W]
06 - fh 0 - o
\ °
o 0
04 i
/m 0
02 o i]
o i
I N
0 falalal falalal
5 0 5 10 15 20 25
n 0

Figure 5: Chebyshev windows and their spectra (L = 21) designed for 30dB (circles and solid
lines) and 60dB (squares and dashed lines) side-lobe suppression

3.6 Windows usable on the oscilloscope

win] W(ei)w(el?)
! —o— Rect 20f ‘ Rect
1.0t — ~ — Flat Top| = = = Flat Top
—9— - Hann ol = = { — — Hann

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

20
n normalized 6 (x m rad/sample)

Figure 6: Windows and their spectra on the oscilloscope in the laboratory (Agilent 54622D).

In the practical part, we will make use of the FFT capabilities of the Agilent 54622D
oscilloscope. On this device, you can select three different window functions: Rectangular, flat-
top and Hann-window. Figure [6] shows a comparison of those windows in time and frequency
domain. Think about application scenarios for each of these three windows!

In Matlab, you can also use wintool to comfortably create and compare different window
functions.

Discrete Fourier Transform 9

4 Applications of the FFT

4.1 Estimation of the power spectral density

A very common task in signal processing is the estimation of the power spectral density (PSD)
of a signal z[n] [1]. A first step would be to compute the normalized squared magnitude of the

signal’s DFT:
1
I[k] = —=| X, [K]|?
K] = —= XK

where L is the length of the window, U is a normalization constant that depends on the chosen
window and X, [k] is the k-th coefficient of the DFT of the windowed signal x[n]w[n]. This
estimate of the PSD is called the periodogram if a rectangular window is used, otherwise it is
called the modified periodogram.

Another method to estimate the PSD of z[n] is to compute the average of R periodograms:

R

This means that the individual I,[k] are periodograms of blocks of the signal xz[n]. Depending
on the application, these blocks can have overlap or not. The choice of the window function
w(n] of course also influences the PSD estimation. If w[n] is the rectangular window then the
method of periodogram averaging is called Bartlett’s procedure. In case of the other window
shapes it is called Welch’s procedure. Think about advantages and disadvantages of the two
methods!

4.2 Fast convolution

One of the first applications of the FFT algorithm was to implement convolution by multipli-
cation in the frequency domain — faster than by evaluating the convolution in the time domain
directly. The linear convolution is defined as

L—1

yln] = Y hlilefn —],

1=0

where z[n] is a length-L, input signal, h[n] is a length-L; impulse response of the filter, and
y[n] is the output signal. Examination of this equation shows that the output signal y[n| has
length L, = (L, + Lj — 1), and computational complexity is of order O(L,?).

The way to compute a fast convolution is to calculate the product Y[k| = X[k|H|[k] of FFTs
of the time signals z[n] and h[n] and to use an inverse FFT to compute the output signal y[n].
For large L, and/or Lj we profit from the reduced computational complexity of the FFT of
O(N log, (N)). However, remember that since the DFT — and FFT — represent periodic time
signals the direct application of this approach would result in a cyclic convolution, which is
often undesirable. The solution is to pad both signals with appropriate number of zeros before
computing the FFTs.

Discrete Fourier Transform 10

5

Practical part

The practical part of the work consists of several tasks that should be performed using the
measurement equipment available and the RPi. Detailed explanation of how and what tasks
should be accomplished is found below.

Experiment 1:
Fourier analysis of periodic signals

The first task of the laboratory will be accomplished without using the RPi.

1.

Switch on signal generator and oscilloscope. Set the signal generator to produce a square
waveform with amplitude of 1 V and a frequency of 500 Hz. Connect the signal generator’s
output to the oscilloscope.

Knowing the amplitude and the period of the oscillations, compute (analytically) the
coefficients Ay of the Fourier series of the input signal for k£ < 8.

On the oscilloscope push [Math]— FFT — Settings. Set Source to the channel that cor-
responds to the output of the signal generator. The frequency resolution can be adjusted
by selecting the time-base of the input signal. Set an appropriate value. (Try to reach
SPAN = 10 kHz and Center = 5 kHz.) Select More FFT and set Window=FLAT
TOP. Set up other options (Scale and Offset) to convenient values.

Measure the amplitudes of the first 8 harmonic components of the corresponding Fourier
representation. Determine the error between the theoretical and the measured values.
What is shown on the scope, which information is lost?

Note: The FFT is plotted in the dB domain. 0 dB corresponds to 1 V RMS amplitude.
Produce and fill in a table like the following:

Harmonic number 1 2 3 4 5) 6 7 8

Frequency (Hz)

Theoretical amplitude A; (V)
Measured amplitude A, (V)
Error E = A, — A, (V)

Discrete Fourier Transform 11

Experiment 2:
Time- and frequency-domain properties of different windows

In this task, MATLAB is used to demonstrate basic properties of windowing functions.

1. Start MATLAB and load the script file fftdemo.m. Set a breakpoint in the first line
of the program, run it, and discuss it using the single-step debug-mode. Change the
frequency from 0.02f; to (16/512) f; and discuss the results. In line 20, other window
functions can be implemented and discussed, if there is time left.

2. Apply a sine-wave to the oscilloscope, view its FFT spectrum and adjust the parameters
of the oscilloscope in order to have the same ratio of the signal- and the FFT-sampling
frequencies as in the previous task. Use the rectangular window! Discuss the result
and compare it to the MATLAB-figures. To further investigate what happens in the
oscilloscope, go step-by-step through the MATLAB script £ft_hp_scope.m.

3. Set the waveform of the signal generator to sine, the amplitude to 1.414 V (corresponding
to 0 dBV RMS on the scope), and the frequency to 1 kHz. On the oscilloscope, set
the time-base to 1073 to get a frequency-resolution of 10 Hz. Select the rectangular
window. Change the frequency between 1 kHz and 1.02 kHz in steps of 1 Hz and measure
the amplitudes. Plot the measured amplitudes vs. frequency and discuss the result!
Repeat for the other windows and identify which window provides the most accurate
measurement of the amplitude.

Note: To make your measurements more accurate, change the FFT scaling factor to 1% and

also make use of cursors and |Quick Meas| capabilities

4. Generate an AM modulated sine-wave using the signal generator (Press [Shift| +[AM] to
activate and de-activate AM). Set the carrier frequency () to 1 kHz, the amplitude
to 0.5 Vpp, and the waveform to sine. For the modulating signal set the frequency to 100
Hz ([Shift] + [Freq]|), modulation depth to 10 % ([Shift] + [Level]), and the waveform

to sine (is default). Discuss how the spectrum of the resulting signal should look like!

5. On the oscilloscope, activate the input signal and set the time-base of the input signal
to 275, As the result you will see the modulated sinusoid with two periods of the
modulated waveform. Set the trigger to the external signal, which will cause a stable
picture. (Set Mode to Normal, if you don’t obtain the stable picture.)

6. Press Math|—»FFT — Settings. Make sure that Source is set to the correct channel
(the output of the signal generator). Set Span= 2 kHz and Center=1kHz. Press More
FFT and select Window=“Rectangular”. What can be seen? What is the frequency-
resolution of the FFT used in the oscilloscope? (Consider the window-duration, which
corresponds to the visible portion of the time-domain signal.)

7. Using the cursors, mark the frequency of the carrier and the frequency of the upper side-
band at 1.1 kHz. Can you distinguish the carrier and the sideband signals? How can the
frequency-resolution be enhanced? Which frequency-resolution is required to distinguish
the signals, without taking spectral leakage into account? Explain your answer.

Discrete Fourier Transform 12

8.

9.

Answer the following questions: How are the sampling period T, sampling frequency
fs, the time-duration of the FFT-window T, and the frequency-spacing Af (frequency-
resolution) between FFT-lines related to one another? Use the parameter N to specify
the number of FFT-points used.

Change the time-base to increase the spectral-resolution. Denote for which resolution
the sidebands become visible first.

Experiment 3:
PSD estimation

Implementation of the periodogram and Welch’s method on the RPi.

1.

Set up the signal generator to produce a 500 Hz sawtooth oscillation with 0.5 Vpp (peak
to peak) amplitude. Connect the RPi to the signal generator and the oscilloscope. On
the oscilloscope press and enable FFT function following the known procedure.

. In netbeans, load the project Exp3 and open blockprocessing.h. Look for the constant

FRAMELENGTH which is identical to the chosen FFT size (DFT length) N.
Make sure that your code uses an FFT size of 128 samples. Do not run the program yet.

Open Fouriertransform.h. Scroll this file to the beginning until you see the definitions
of two important parameters: const int AVERAGING is used to specify the number of
periodograms to average and const float ADDNOISE is used to add a certain amount
of noise (simulated within the program) to the input signal to test for the robustness of
the estimator. Make sure that AVERAGING is 1 (such that no averaging is performed) and
that no noise is added. If necessary, rebuild the project.

. Explore the power spectral density using Matlab. Copy the periodogram values from the

command window to Matlab and plot it. Note which harmonics can be identified (the
sampling frequency is 32 kHz, you can click in the graph area and see the sample index on
the lower left). For visualization purposes, often the decibel scale (10¥10g10()) is chosen.

Add some noise by increasing ADDNOISE to a value of 0.005 and rebuilding the program.
Again note which harmonics can be identified. Now increase the FFT-size (equivalent to
the buffer size FRAMELENGTH) to 256 and 512. Describe the effect of the longer FFT
on the PSD estimate!

Now use periodogram averaging by setting AVERAGING to 10 and with the FFT-size
again reduced to 128. Rebuild and run the program. Note again which harmonics can be
identified. Also try the longer FF'T sizes with averaging enabled and also higher numbers
for the number of periodograms to average. What are the advantages and disadvantages
of the Welch method?

For your report, capture some of the outputs for the PSD estimation that you find to be
explanatory.

Discrete Fourier Transform 13

A Credits

This document was authored and/or adapted by Dmitriy Shutin, Klaus Witrisal, Erhard Rank,
Marian Képesi, Paul Meissner, Christian Knoll and Josef Kulmer.

References

[1] Oppenheim, A. V., Schafer, R. W., and Buck, J. R., “Discrete-Time Signal Processing”,
2nd edition, Prentice-Hall, Inc., 1999.

[2] Feldbauer, C.: “Real-Time Block Processing Environment,” Laboratory Handout, http:
/ /www.spsc.tugraz.at/courses/dsplab /intro /blockprocessing.pdf, 2005.

http://www.spsc.tugraz.at/courses/dsplab/intro/blockprocessing.pdf
http://www.spsc.tugraz.at/courses/dsplab/intro/blockprocessing.pdf

	Introduction
	Overview of Fourier transform family
	Fourier series (FS)
	Fourier transform (FT)
	Discrete-time Fourier transform (DTFT)
	Discrete Fourier Transform (DFT)

	Window functions
	Rectangular window
	Triangular (Bartlett) window
	Generalized cosine windows
	Kaiser window
	Chebyshev window (also Dolph-Chebyshev)
	Windows usable on the oscilloscope

	Applications of the FFT
	Estimation of the power spectral density
	Fast convolution

	Practical part
	Credits

