
Digital Filter Implementation 2
442.003 Digital Signal Processing, Laboratory

Winter Term 2023/24
Signal Processing and Speech Communication Laboratory

www.spsc.tugraz.at

Last updated: November 3, 2023

Abstract

In the first experiment of this laboratory, we examine a source code example of a
cascaded biquad IIR filter implemented in fixed-point arithmetic. The second task deals
with zero-input limit cycles in fixed-point IIR filters and in the last experiment, we use
an FIR Hilbert transformer to implement a single-sideband modulator.

1 Theoretical Overview
1.1 Limit Cycles
A limit cycle1 is an isolated closed trajectory in the state space2 of a system (see [1]). Whenever
the system’s state advances on a closed trajectory, the system exhibits oscillations. Limit cycles
are inherently nonlinear phenomena—they can’t occur in linear systems. Of course, a linear
system of at least second order can produce oscillations (e.g. a linear filter with a pole on the
unit circle), but their closed trajectories are not isolated (neighboring trajectories are closed
too—the amplitude of the oscillation of a linear system is set entirely by the initial conditions).

When we implement an IIR filter (feedback loops) with finite-precision arithmetic, we will
get a nonlinear dynamic system and therefore oscillations may occur even when the (quantized)
filter coefficients yield a stable (linear) filter. We distinguish between

1. limit cycles due to overflow (modulo behavior) after accumulation and

2. limit cycles due to quantization (truncation or rounding) after multiplication or accumu-
lation.

The first produces oscillations with high amplitudes, whereas the second exhibits oscillations
with low amplitudes which are disturbing especially if no input signal is applied to the filter
(zero input). Fortunately, limit cycles of the first type can be avoided in second-order systems
by using a saturation characteristic. For more information refer to [2].

1In German: Grenzzyklus
2Q: What is the state space of a digital filter?

http://www.spsc.tugraz.at/

Digital Filter Implementation 2 2

Bit stream Map to 2D QAM
 constellation

Impulse
modulator

Impulse
modulator

Baseband
transmit
filter

Baseband
transmit
filter

Local
Oscillator

cos(2πf
c
t)

sin(2πf
c
t)

s(t)

a
n

b
n

ǎ(t)

b̌(t) b(t)

a(t)

bit sequece
4-QAM

b
n

a
n

ǎ(t)

b̌(t)
b(t)

a(t)

11

01

10

00

Figure 1: A Basic QAM modulator.

1.2 QAM modulator
Quadrature Amplitude modulation (QAM) is a widely used digital modulation technique. The
goal of the digital modulation is to construct the baseband representation of the modulated
digital signal, which is then modulated by the carrier frequency to the proper frequency band.
It is often used as a modulation scheme in standard telephone modems, as well as in FAX
modems, wireless LAN standards and many other digital communication systems. In this
laboratory we will only consider a QAM modulator.

The block/diagram of the QAM modulator is shown in Figure 1. The input data bits
d that arrive at the rate of Fdata = 1/Tdata bps are converted into J-bit binary words by
simply concatenating consecutive bits. Each J-bit word selects a channel symbol from the 2J

alphabet, given by the corresponding QAM constellation Fig.2. Each symbol in the alphabet
is represented by a corresponding complex number cn = an + jbn selected from the QAM
constellation:

Word Signal point

’00’ 1 + j1
’01’ −1 + j1
’10’ 1− j1
’11’ −1− j1

This mapping will correspond to the symbol rate (also known as baud rate) of Fsymb = Fdata/J .
It is customary to call the real part of the symbol, an, the in-phase component or I compo-
nent, and the imaginary part, bn, the quadrature or Q component. There are several QAM
constellation sizes used in practice: J = 2 (4-QAM), J = 4 (16-QAM), J = 6 (64-QAM),
J = 8 (256-QAM), and J = 10 (1024-QAM) (see examples in Fig. 2).

Case J = 10 provides the highest bit rate for the same baud rate, however this regime
requires very high SNR in order to achieve acceptable bit-error rate.

Digital Filter Implementation 2 3

J=2 4-QAM

b
n

a
n

11

01

10

00

b
n

a
n

J=4 16-QAM

J=6 64-QAM

a
n

b
n

Figure 2: Examples of the mappings for 4-QAM, 16-QAM, and 64-QAM constellations.

The I and Q components are then passed through the impulse modulators

ǎ(t) =
∞∑

k=−∞

akδ(t− kTsymb),

and
b̌(t) =

∞∑
k=−∞

bkδ(t− kTsymb),

resulting in the pulse-modulated representation of the transmitted symbols. These signals are
then passed through the identical baseband transmit shaping filters, each with the impulse
response g(t). The baseband transmit filter is typically a lowpass filter approximating the
raised cosine or square-root of cosine response, so its cutoff frequency is somewhat greater
than Fsymb/2. The role of the shaping filters is to restrict the bandwidth of the transmitted
signal. The output of the transmit filters can be then represented as

a(t) =
∞∑

k=−∞

akg(t− kTsymb),

b(t) =
∞∑

k=−∞

bkg(t− kTsymb).

In order to translate the baseband modulated signal into the proper passband, in-phase
and quadrature components a(t) and b(t) are double-sideband suppressed-carrier amplitude
modulated by the carriers cos(2πfct) and sin(2πfct) as shown in Fig. 1. The resulting QAM
signal s(t) is then formed as

s(t) = a(t) cos(2πfct)− b(t) sin(2πfct)

The receiver can then recover the quadrature and in-phase components from s(t) by exploiting
the Hilbert transform of s(t) (for more information see [3]):

s̃(t) =
[
s(t) +H{s(t)}

]
e−j2πfc =

∞∑
k=−∞

(ak + jbk)g(t− kTsymb),

Digital Filter Implementation 2 4

where H{·} is a Hilbert Transform operator. The demodulated signal s̃(t) is then sampled at
the symbol period s̃(nTsymb) = (ak + jbk) and the corresponding values are mapped back into
the bit sequence.

Digital Filter Implementation 2 5

2 Practical Part

Experiment 1:
Fixed-Point Implementation of a Cascade Form IIR Filter
Equipment: Your brain
Software: Knowledge

1. Examine the C code in Figure 4. This is the C equivalent of the hand-optimized assem-
bly routine taken from an Texas Instruments DSP. Draw the signal-flow graph that is
implemented by the code within the for loop.

2. Answer the following questions:

(a) Which numerical format (number of bits for the integer portion and for the fractional
portion, significance of bits) is expected for the filter coefficients?

(b) Which numerical range is resulted for the filter coefficients?
(c) Draw the area in the z-plane where poles (or zeros) can be located. Is it possible to

use this routine for a general IIR filter?
(d) Which numerical format should be used when we want to be able to place poles

anywhere within the unit circle?

void iir_cas4(int n_cas, short *coeffs, int *states, int *io)
{ int k0, k1, i;
for(i = 0; i < n_cas; i++)
{ k0 = coeffs[4*i+1] * (states[2*i+1] >> 16) +

coeffs[4*i+0] * (states[2*i+0] >> 16) + io[0];
io[0] = coeffs[4*i+3] * (states[2*i+1] >> 16) +

coeffs[4*i+2] * (states[2*i+0] >> 16) + k0;
states[2*i+1] = k0;
k1 = coeffs[4*i+1] * (states[2*i+0] >> 16) +

coeffs[4*i+0] * (k0 >> 16) + io[1];
io[1] = coeffs[4*i+3] * (states[2*i+0] >> 16) +

coeffs[4*i+2] * (k0 >> 16) + k1;
states[2*i+0] = k1;

}
}

Figure 3: C equivalent of an IIR filter.

Digital Filter Implementation 2 6

Experiment 2:
Limit Cycle due to ?
Equipment: PC + RPi, headphones
Software: netbeans, download /courses/dsplab/filt2 and unzip it on your workstation

1. Plug the output of the PC soundcard (or a CD player) to the RPi input and the head-
phones to the RPi output.

2. In netbeans, load the provided project file Exp2.

3. Edit the filter coefficients in iir2.cpp according to the following table (Q15 = 215 is
already defined). b(0) b(1) b(2) a(0) a(1) a(2)

Q15 0 0 Q15 -Q15*3/4 Q15*3/4

4. Build the program, load it to the RPi, and run it. Provide an input signal to the RPi
and listen to the output. If you can hear a non-distorted output signal we can assume
the filter works properly.

5. Edit the file iir2.cpp again: set the initial conditions to y(-2) y(-1)
-Q15*4/5 Q15*4/5

6. Rebuild the program and load it to the RPi. Before you run the program, ensure the
amplitude of the provided input signal is zero (e.g., use the soundcard’s mixer to set the
volume) and ensure you do not wear the headphones. What can you observe at the
RPi’s output?

7. Continuously increase the amplitude (volume) of the provided input signal. Does this
change the program’s behavior?

8. In order to see more clearly what’s going on, print the output samples in of each frame
using for(int i=0;i<framelength;i++){
std::cout«out[i]«std::endl;} Set the filter coefficient b(0)=0 in iir2.cpp to force zero
input. Rebuild, reload, and run the program. It is not necessary to provide an input
signal to the RPi now, because all feed-forward coefficients are zero.
Answer whether these plotted samples can be the zero-input response of a stable linear
system or not (explain). Analyze the source code in iir2.cpp and find out whether there
is a nonlinearity that causes the observed behavior.

http://www.spsc.tugraz.at/courses/dsplab/filt2/limcyc1.zip

Digital Filter Implementation 2 7

Experiment 3:
QAM modulator

1. Connect left and right RPi channels to the oscilloscope.

2. If necessary start the netbeans and load the Exp3 project. Open the Quam.h file and set
MODULATE 0, SINGLECHANNEL 0, and
INC_TRANS_CHANNEL 0. This will disable the carrier modulation, and will result
in the in-phase and quadrature components outputted separately over the left and right
channels. The last definition will switch off the simulation of the communication channel
influence.

3. Now, let us start with the 4-QAM scheme. Set #define QAM 4, build the program and
run it.

4. By default the program will only perform simple impulse modulation without the usage
of transmit filters. Using the fir() function, which implements an FIR filtering, and raised
cosine impulse response, stored in the variable G[] implement the corresponding transmit
filter. Your code should go in the qam() method in Quam.cpp.

5. On the oscilloscope horizontal control panel press Main/Delayed button and select
XY mode. If the modulation is disabled, you should be able to see the selected QAM
constellation. Keep in mind, that left and right channels are used to output real and
imaginary parts of the symbols we are transmitting. You can also enable averaging to
remove some noise.

6. Now, try including the channel. First, set INC_TRANS_CHANNEL 1. This will simu-
late a simple communication channel with an impulse response h[n] = (c+ jd)δ[n]. Note
how the channel influence the signal constellation. In the Quam.cpp file find method
channel() that simulates the channel and try setting other values for the channel coeffi-
cients c and d.

7. By setting INC_TRANS_CHANNEL 2 you can simulate the influence of the time-
varying channel with the impulse response ht[n] = (c(t) + jd(t))δ[n]. Note that the
signal constellation is now changes with time, thus requiring an adaptive equalizer, that
cancels the time-varying nature of the channel.

8. Now, let us return to the normal display mode by pressing Main/Delayed→Main .

9. In the source code set SINGLECHANNEL 1. In this mode one of the channels will be
used to transmit the sync signal that changes its state at the symbol boundary, while the
other channel is difference between the in-phase and the quadrature components. The
latter is real valued and it is exactly the signal that is then transmitted over the channel.

10. Then, press Math→FFT→Setting and set Source to the channel that corresponds
to the information signal, Span to 20kHz, and Center to 10kHz.

11. Measure the zero-to-zero signal bandwidth B as given by the FFT spectrum.

Digital Filter Implementation 2 8

12. For the case when each symbol consist of N samples, and sampling rate Fs is set to
Fs = 32kHz, compute the symbol period Tsymb and the corresponding baud rate Fsymb

(symbols/sec) for this system. What is then the corresponding data rate Fdata (bps)?
Compare these numbers to the bandwidth of the transmitted signal.

13. Now, enable the modulation by setting MODULATE 1 in the source code.

14. Measure the center frequency Fc and the bandwidth of the resulting channel.

15. Try other modulation schemes, i.e., 16-QAM, 64-QAM, 256-QAM, and 1024-QAM. What
is the bandwidth of the modulated signal in these cases? What are the corresponding
baud and bits rates in these cases?

A Credits
This document was authored and/or adapted by Christian Feldbauer and Josef Kulmer.

References
[1] Strogatz, S.H., “Nonlinear dynamics and chaos: With applications to physics, biology,

chemistry, and engineering,” Addison-Wesley, Reading, MA, 1994.

[2] Oppenheim, A.V. and Schafer, R.W.: “Discrete-Time Signal Processing,” Second Edition,
Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1999.

[3] Doblinger, G.: “Signalprozessoren. Architekturen—Algorithmen—Anwendungen,” J.
Schlembach Fachverlag, Weil der Stadt, Deutschland, 2000.

[3] Bernard Sklar, “Digital Communication - Fundamentals and Applications,” Prentice Hall
PTR, 2000.

	Theoretical Overview
	Limit Cycles
	QAM modulator

	Practical Part
	Credits

