Signal Processing and Speech Communication Laboratory Graz University of Technology

Exam for

442.001 / SES.208UF Signal Processing 442.009 Fundamentals of Discrete-time Signals and Systems

 taking place on 06.03.2024Duration: 180 minutes, Achievable points: 100

Permitted aids: provided SPSC formulary, scientific (non-alphanumeric) calculator, supplied (no personally brought) paper, drinks and snacks.

! Important !

The problem statement and the formulary must be returned at the end of the exam!

Write your name and matriculation number on all sheets of your solution!

Problem 1 (25 Points)

A signal $x[n]$ where $0 \leq n<N$ should be represented as a combination of K base signals $\left\{b_{k}[n]\right\}_{k=0}^{K-1}$ where $0 \leq n<M$ with corresponding coefficients $\left\{a_{k}\right\}_{k=0}^{K-1}$ as

$$
x[n]=\sum_{k=0}^{K-1} a_{k} \cdot b_{k}[n] .
$$

(a) In general, how would you choose the length M of the base signals? Discuss the cases (i) $M<N$, (ii) $M=N$ and (iii) $M>N$.
(b) How many base signals K are certainly sufficient to represent an arbitrary signal
(i) $x \in \mathbb{R}^{N}$ with $b_{k} \in \mathbb{R}^{M}$,
(ii) $x \in \mathbb{C}^{N}$ with $b_{k} \in \mathbb{C}^{M}$,
for $k \in\{0 \ldots K-1\}$ and real-valued coefficients $a_{k} \in \mathbb{R}$ with suitably chosen M ? Using a simple example for $N=2$, illustrate the case that a signal space cannot be sufficiently spanned with too few base signals.
(c) How can you compute the coefficients a_{k} for a general signal x and orthogonal base signals b_{k} ?
(d) Let $x[n]$ be given as

$$
x[n]= \begin{cases}A & \text { if } n<N_{0} \\ 0 & \text { otherwise }\end{cases}
$$

where $0<N_{0} \leq N$ and $b_{k}[n]=\delta[n-k]$. Determine the coefficients a_{k}.
(e) Which criteria must an orthonormal basis obey? Is the basis in Task (d) an orthonormal basis? Prove!

Problem 2 (25 Points)

Given are the following discrete-time signals:

$$
x[n]=\cos \left(\frac{\pi}{2} n\right) \quad h[n]= \begin{cases}0 & n<0 \\ 1 & 0 \leq n<2 \\ 0 & 2 \leq n\end{cases}
$$

(a) Are these sequences periodic signals? If yes, what is the periode length N_{0} ?
(b) Assume that the signals were sampled with a sampling frequency of $f_{s}=800 \mathrm{~Hz}$ und the Nyquist criterion was obeyed. What period T_{0} in s would correspond to the discrete period N_{0} ?
(c) Let $\hat{x}[n]=\left\{\begin{array}{l}x[n] \text { if } 0 \leq n \leq 2 \\ 0 \text { otherwise }\end{array}\right.$

Compute analytically the linear convolution $y[n]=(\hat{x} * h)[n]$ and sketch the signals $\hat{x}[n], h[n]$ und $y[n]$. What is the length N_{y} of the result of a linear convolution of two signals with length N_{x} and N_{h} in general?
(d) Use the formulary to compute the multiplication of the signals $z[n]=x[n] \cdot h[n]$ using the DTFT, i.e., compute $z[n]=\operatorname{DTFT}^{-1}\{\operatorname{DTFT}\{x[n] \cdot h[n]\}\}$.

Problem 3 (25 Points)

Consider a causal, discrete-time LTI-system with system function $H(z)$. Its poles are given as $z_{\infty, 1}=-0.75$ and $z_{\infty, 2}=0.5$, its zeros are given as $z_{0,1}=1.5 j$ and $z_{0,2}=-1.5 j$.
(a) Sketch the pole-zero diagram and determine the region of convergence (ROC). Is the system BIBO stable? Explain!
(b) A system is minimum-phase if it has a causal and stable inverse. Is $H(z)$ minimum-phase? Explain!
(c) Assume that the maximum of the magnitude response satisfies $\max _{\theta}\left|H\left(e^{j \theta}\right)\right|=1$. Determine the system function $H(z)$.
(d) Determine the impulse response $h[n]$ of the system. Is $h[n]$ absolut summable, i.e., $\sum_{n=-\infty}^{\infty}|h[n]|<\infty$? Explain!

Problem 4 (25 Points)

Consider the following multirate system with an ideal lowpass filter $H\left(e^{j \theta}\right)$:

The continuous-time signal $x_{c}(t)=\cos \left(2 \pi f_{0} t\right)$ with frequency $f_{0}=200 \mathrm{~Hz}$ is sampled at a rate $f_{s}=0.8 \mathrm{kHz}$ in order to obtain the discrete-time signal $x[n]$.
(a) Determine the discrete-time signal $x[n]$. Can you find an alternative choice for f_{0} yielding the same discrete-time signal $x[n]$?
(b) Sketch the signals $x[n], v[m]$ und $w[n]$ for the input signal $x_{c}(t)$. Sketch at least two perods of the signals.
(c) Sketch the Fourier transforms of the signals $x[n], v[m]$ und $w[n]$ for the input signal $x_{c}(t)$ and mind the correct amplitude scaling. Sketch at least two perods of the spectra.
(d) Does $y[n]=x[n]$ hold? If not, sketch the frequency response of an ideal filter $H\left(e^{j \theta}\right)$ such that $y[n]=x[n]$ holds.
(e) Which requirement must f_{0} fulfill for a given sampling frequency such that $y[n]=x[n]$ holds?
(f) Can information loss occur in this multirate system? Explain!

