Signal Processing and Speech Communication Laboratory Graz University of Technology

Exam for

442.001 / SES.208UF Signal Processing 442.009 Fundamentals of Discrete-time Signals and Systems

taking place on 06.03.2024

Duration: 180 minutes, Achievable points: 100

Permitted aids: provided SPSC formulary, scientific (*non*-alphanumeric) calculator, supplied (*no* personally brought) paper, drinks and snacks.

! Important !

The problem statement and the formulary must be returned at the end of the exam!

Write your name and matriculation number on all sheets of your solution!

Problem 1 (25 Points)

A signal x[n] where $0 \le n < N$ should be represented as a combination of K base signals $\{b_k[n]\}_{k=0}^{K-1}$ where $0 \le n < M$ with corresponding coefficients $\{a_k\}_{k=0}^{K-1}$ as

$$x[n] = \sum_{k=0}^{K-1} a_k \cdot b_k[n].$$

(a) In general, how would you choose the length M of the base signals? Discuss the cases (i) M < N, (ii) M = N and (iii) M > N.

(b) How many base signals K are certainly sufficient to represent an arbitrary signal

(i) $x \in \mathbb{R}^N$ with $b_k \in \mathbb{R}^M$,

(ii)
$$x \in \mathbb{C}^N$$
 with $b_k \in \mathbb{C}^M$.

for $k \in \{0..., K-1\}$ and **real-valued coefficients** $a_k \in \mathbb{R}$ with suitably chosen M? Using a simple example for N = 2, illustrate the case that a signal space cannot be sufficiently spanned with too few base signals.

(c) How can you compute the coefficients a_k for a general signal x and orthogonal base signals b_k ?

(d) Let x[n] be given as

$$x[n] = \begin{cases} A & \text{if } n < N_0 \\ 0 & \text{otherwise} \end{cases}$$

where $0 < N_0 \leq N$ and $b_k[n] = \delta[n-k]$. Determine the coefficients a_k .

(e) Which criteria must an orthonormal basis obey? Is the basis in Task (d) an orthonormal basis? Prove!

Problem 2 (25 Points)

Given are the following discrete-time signals:

$$x[n] = \cos\left(\frac{\pi}{2}n\right) \qquad \qquad h[n] = \begin{cases} 0 & n < 0\\ 1 & 0 \le n < 2\\ 0 & 2 \le n \end{cases}$$

(a) Are these sequences periodic signals? If yes, what is the periode length N_0 ?

(b) Assume that the signals were sampled with a sampling frequency of $f_s = 800$ Hz und the Nyquist criterion was obeyed. What period T_0 in s would correspond to the discrete period N_0 ?

(c) Let
$$\hat{x}[n] = \begin{cases} x[n] & \text{if } 0 \le n \le 2\\ 0 & \text{otherwise.} \end{cases}$$

Compute analytically the linear convolution $y[n] = (\hat{x} * h)[n]$ and sketch the signals $\hat{x}[n]$, h[n] und y[n]. What is the length N_y of the result of a linear convolution of two signals with length N_x and N_h in general?

(d) Use the formulary to compute the multiplication of the signals $z[n] = x[n] \cdot h[n]$ using the DTFT, i.e., compute $z[n] = \text{DTFT}^{-1}\{\text{DTFT}\{x[n] \cdot h[n]\}\}$.

Problem 3 (25 Points)

Consider a causal, discrete-time LTI-system with system function H(z). Its poles are given as $z_{\infty,1} = -0.75$ and $z_{\infty,2} = 0.5$, its zeros are given as $z_{0,1} = 1.5j$ and $z_{0,2} = -1.5j$.

(a) Sketch the pole-zero diagram and determine the region of convergence (ROC). Is the system BIBO stable? Explain!

(b) A system is minimum-phase if it has a causal and stable inverse. Is H(z) minimum-phase? Explain!

(c) Assume that the maximum of the magnitude response satisfies $\max_{\theta} |H(e^{j\theta})| = 1$. Determine the system function H(z).

(d) Determine the impulse response h[n] of the system. Is h[n] absolut summable, i.e., $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$? Explain!

Problem 4 (25 Points)

Consider the following multirate system with an ideal lowpass filter $H(e^{j\theta})$:

The continuous-time signal $x_c(t) = \cos(2\pi f_0 t)$ with frequency $f_0 = 200$ Hz is sampled at a rate $f_s = 0.8$ kHz in order to obtain the discrete-time signal x[n].

(a) Determine the discrete-time signal x[n]. Can you find an alternative choice for f_0 yielding the same discrete-time signal x[n]?

(b) Sketch the signals x[n], v[m] und w[n] for the input signal $x_c(t)$. Sketch at least two perods of the signals.

(c) Sketch the Fourier transforms of the signals x[n], v[m] und w[n] for the input signal $x_c(t)$ and mind the correct amplitude scaling. Sketch at least two periods of the spectra.

(d) Does y[n] = x[n] hold? If not, sketch the frequency response of an ideal filter $H(e^{j\theta})$ such that y[n] = x[n] holds.

(e) Which requirement must f_0 fulfill for a given sampling frequency such that y[n] = x[n] holds?

(f) Can information loss occur in this multirate system? Explain!