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Session contents

» Today:
» Volterra Series as representation of fading-memory NL
» System identification using different inputs
» Time series modelling (Homework)

> Next time:
» Higher-order statistics and spectral analysis

"~ NLSP Ss 2019 May 23, 2019

Slide 2/17




Graz University of Technology — SPSC Laboratory ﬁl’g_

Volterra series — Definition

» A finite Volterra series of order p and memory length M:
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» Universal approximator for time-invariant causal operators
with fading memory (for bounded input signals)

"~ NLSP Ss 2019 May 23, 2019 Slide 3/17




Graz University of Technology — SPSC Laboratory ﬁl’g_

Volterra series — System identification (1)

» Only term with h1[] is linear!
» Complexity grows exponentially with MP
» Choice of input signal for system identification?

» Remember RBF-fits: Model also linear in coefficients —
Least-squares fit easy

y[n] = Zakqﬁk(x[n]) N equations
K

» Arrange in equation system
(0] gu(x[0]) - Pk(x[0]) o
-1l oGy o oev - 1] Lok
y ®, (NxK), N>K
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Volterra series — System identification (2)

» Here we use the same method, just different basis functions

» Second order Volterra system as example (1 + M + M? coeff.)
» You need “quite some” datal

M—-1 M-1
y[n] = ho + Z hi[mi] x[n — m] + Z Z ha[m1, mp] x[n — m1] x[n — my]
my=0 m1=0 mp=0
ho
hy[0]
ym 1 X0 - x=M+1 20 xOx[=1 - R[M41,-M+1] :
i o1l - x[=M+2] X2 x[Ux[0] - XP[-M 42, —M +2] hi[M — 1]
: . h[0, 0]
JIN 1] el

hlM —1,M — 1]

» Basis vectors/functions are the data products
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Volterra series — Matlab files
» Function vkernels.m does the LS-fit (use p3_1.m as tutorial)
> Nonlinearities defined in nlsysteml.m
y[n] = aox[n] + aix[n — 1] + axx[n]® + asx[n]x[n — 1]

» Output of vkernels.m for this nonlinearity:

H{1} =0
B2 =[ a0 a ]’
x[n]? x[n]x[n—1]
an as
H{3} = 2 0
~~ ~
x[n—1]x[n] x[n—1]2

» Or optionally a structure Vmodel that can be directly passed
to vkernels_o.m for Problem 3.2
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Volterra series — Time series modelling /forecasting

» Given a correlated (not necessarlily just second order!) time
series s = [s1,...,sn]"

» Current sample s, depends on past samples

» Volterra series one way to model the dependence

» Input x and output y both generated from s

» Partitioning of s into training and validation sequences

— Homework
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Higher order statistics and spectral analysis

We are used to first- and second-order statistics
» Mean: u=E{x[n]}
» ACF: mp[k] = E{x[n]x[n + K]}
This is suitable as long as we deal with linear systems, e.g.

v

v

K

yln] =Y x[k]hln — K]

k=0

v

Standard example for a random process: Linear process, i.e.
x[k] is a white-noise process driving a linear system
But what if our system is nonlinear, e.g.

v

y[n] = aox[n] + aix[n — 1] + agx[n]2 + asx[n]x[n — 1]
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Higher order statistics and spectral analysis - Example

» Linear system w. K = 10, driven by white noise

A
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Higher order statistics and spectral analysis - Example

» Linear system w. K = 10, driven by white noise
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» Support of non-zero ACF indication for memory

>

%
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Higher order statistics and spectral analysis - Example

» Linear system w. K = 10, driven by white noise

A
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» Support of non-zero ACF indication for memory
» How do you evaluate nonlinear combinations of input samples?

%
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Higher order statistics and spectral analysis - Example

> Linear system w. K = 10, driven by white noise
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» Support of non-zero ACF indication for memory

» How do you evaluate nonlinear combinations of input samples?
— Evaluate HOS, e.g. third-order E{x[n]x[n + k]x[n + ]}
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HOSA — Definitions

v

Generalization of ACF: Non-central moments of order r for
stationary process x[n]

m,[k17 ey krfl] = E{x[n]x[n + kl] .- -x[n + k,«,l]}

» Cumulant of order r again defined over characteristic function
» Can be expressed and estimated via moments
» Fourier transform of ACF is power spectral density

» Fourier transform (2D) of third order cumulant is the
Bispectrum

DFT
> Cg[kl, k2] — Cg‘[wl, WQ]
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HOSA - Important Properties

» x[n] Gaussian:
S (kiy- ooy k1) = CX(wr,y ..o ywr—1) =0 for r > 2
» x[n] i.i.d.:
Cf(kl, ey krfl) =a- (5([(1, ey krfl)
CX(wi,...,wr—1)=a
» x[n] symmetrically distributed around zero:
ki, ke—1) =C¥wr,...,w,—1) =0for r=0,3,57,...
» z[n] = x[n] + y[n], where x[n], y[n] jointly stationary and
statistically independent:
() =c () +()
) =c)+cr()
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HOSA - Pros and Cons

Pros

» Analysis of nonlinearities
» Cumulants are additive for independent processes

» Gaussian noise: HOS zero (blind to Gaussian noise)

Cons

» Difficult to estimate from finite length data
> Influence of window

» Once you have them, how do you interpret them?
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HOSA — Example

» Example for a third-order cumulant
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HOSA — Example

» Example for a Bispectrum
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HOSA — Example

» Example for a PSD

PSD estimate
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HOSA — Matlab (1)

» HOSA toolbox, free, included in download-file

» HOSA toolbox manual is a great ressource (Matlab-central)!
> You will need:

» cumest.m used to estimate cumulants

rpiid.m used to help generating input processes
gabrrao.m used to calculate window for 2D-FFT
viscumul3.m and

visbispec3.m for visualization

vV vy vVvYyy
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HOSA — Matlab (2)

» cumest.m for third order cumulant calculates just one slice of
the 2D correlation function
for k = -MaxLag : MaxLag
c3(:, k+MaxLag+l) = cumest(#, #, #, #, #, #, k);
end
» Bispectrum calculation: use fftshift(£ft2( c3 .*x w ))
to have a familiar picture
» Window w[n] obtained from gabrrao.m, optimal smoothing
window, minimum bias in estimation
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Higher order statistics and spectral analysis - Problems (1)

» Limited amount of data leads to higher variance of estimators
» Problem even for ACF — Grows exponentially with order

» This makes visual interpretation much harder:

» When is a Bispectrum zero?
» When is a Bicoherence function flat?
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Higher order statistics and spectral analysis - Problems (2)

» Linear system w. K = 10, driven by white noise (500 samples)
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Higher order statistics and spectral analysis - Problems (2)

» Linear system w. K = 10, driven by white noise (500 samples)
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Higher order statistics and spectral analysis - Problems (2)

» Linear system w. K = 10, driven by white noise (500 samples)
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Higher order statistics and spectral analysis - Problems (2)

» Linear system w. K = 10, driven by white noise (500 samples)
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