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Session contents

I Today:
I Volterra Series as representation of fading-memory NL
I System identification using different inputs
I Time series modelling (Homework)

I Next time:
I Higher-order statistics and spectral analysis
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Volterra series – Definition

I A finite Volterra series of order p and memory length M:

y [n] = h0 +
M−1∑
m1=0

h1[m1] x [n −m1]

+
M−1∑
m1=0

M−1∑
m2=0

h2[m1,m2] x [n −m1] x [n −m2]+

+
M−1∑
m1=0

M−1∑
m2=0

M−1∑
m3=0

h3[m1,m2,m3] x [n −m1] x [n −m2] x [n −m3] + · · ·+

+
M−1∑
m1=0

· · ·
M−1∑
mp=0

hp[m1, . . . ,mp]

p∏
i=1

x [n −mi ]

I Universal approximator for time-invariant causal operators
with fading memory (for bounded input signals)
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Volterra series – System identification (1)

I Only term with h1[·] is linear!

I Complexity grows exponentially with Mp

I Choice of input signal for system identification?

I Remember RBF-fits: Model also linear in coefficients →
Least-squares fit easy

y [n] =
∑
k

αkφk(x [n]) N equations

I Arrange in equation system y [0]
...

y [N − 1]


︸ ︷︷ ︸

y

=

 φ1(x [0]) · · · φK (x [0])
...

. . .
...

φ1(x [N − 1]) · · · φK (x [N − 1])


︸ ︷︷ ︸

Φ, (N×K), N�K

α1

...
αK



NLSP SS 2019 May 23, 2019 Slide 4/17



Graz University of Technology – SPSC Laboratory

Volterra series – System identification (2)

I Here we use the same method, just different basis functions

I Second order Volterra system as example (1 +M +M2 coeff.)
I You need “quite some” data!

y [n] = h0 +

M−1∑
m1=0

h1[m1] x[n −m1] +

M−1∑
m1=0

M−1∑
m2=0

h2[m1,m2] x[n −m1] x[n −m2]


y [0]
y [1]

.

.

.
y [N − 1]

 =


1 x[0] · · · x[−M + 1] x2[0] x[0]x[−1] · · · x2[−M + 1,−M + 1]

1 x[1] · · · x[−M + 2] x2[1] x[1]x[0] · · · x2[−M + 2,−M + 2]

.

.

.

.

.

.





h0
h1[0]

.

.

.
h1[M − 1]
h2[0, 0]
h2[0, 1]

.

.

.
h2[M − 1,M − 1]


I Basis vectors/functions are the data products
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Volterra series – Matlab files

I Function vkernels.m does the LS-fit (use p3 1.m as tutorial)
I Nonlinearities defined in nlsystem1.m

y [n] = a0x [n] + a1x [n − 1] + a2x [n]
2 + a3x [n]x [n − 1]

I Output of vkernels.m for this nonlinearity:

H{1} = 0

H{2} =
[
a0 a1

]T
H{3} =


x[n]2︷︸︸︷
a2

x[n]x[n−1]︷︸︸︷
a3

a3︸︷︷︸
x[n−1]x[n]

0︸︷︷︸
x[n−1]2


I Or optionally a structure Vmodel that can be directly passed

to vkernels o.m for Problem 3.2
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Volterra series – Time series modelling/forecasting

I Given a correlated (not necessarlily just second order!) time
series s = [s1, . . . , sN ]T

I Current sample sn depends on past samples

I Volterra series one way to model the dependence

I Input x and output y both generated from s
I Partitioning of s into training and validation sequences

→ Homework
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Higher order statistics and spectral analysis

I We are used to first- and second-order statistics
I Mean: µ = E{x [n]}
I ACF: m2[k] = E{x [n]x [n + k]}

I This is suitable as long as we deal with linear systems, e.g.

y [n] =
K∑

k=0

x [k]h[n − k]

I Standard example for a random process: Linear process, i.e.
x [k] is a white-noise process driving a linear system

I But what if our system is nonlinear, e.g.

y [n] = a0x [n] + a1x [n − 1] + a2x [n]
2 + a3x [n]x [n − 1]
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Higher order statistics and spectral analysis - Example

I Linear system w. K = 10, driven by white noise
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Higher order statistics and spectral analysis - Example
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Higher order statistics and spectral analysis - Example
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Higher order statistics and spectral analysis - Example

I Linear system w. K = 10, driven by white noise
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I Support of non-zero ACF indication for memory

I How do you evaluate nonlinear combinations of input samples?

→ Evaluate HOS, e.g. third-order E{x [n]x [n + k]x [n + l ]}
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HOSA – Definitions

I Generalization of ACF: Non-central moments of order r for
stationary process x [n]

mr [k1, . . . , kr−1] = E{x [n]x [n + k1] · · · x [n + kr−1]}

I Cumulant of order r again defined over characteristic function

I Can be expressed and estimated via moments

I Fourier transform of ACF is power spectral density

I Fourier transform (2D) of third order cumulant is the
Bispectrum

I cx3[k1, k2]
DFT−→ Cx3 [ω1, ω2]
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HOSA – Important Properties

I x [n] Gaussian:

cxr (k1, . . . , kr−1) = Cxr (ω1, . . . , ωr−1) = 0 for r > 2

I x [n] i.i.d.:

cxr (k1, . . . , kr−1) = a · δ(k1, . . . , kr−1)
Cxr (ω1, . . . , ωr−1) = a

I x [n] symmetrically distributed around zero:

cxr (k1, . . . , kr−1) = Cxr (ω1, . . . , ωr−1) = 0 for r = 0, 3, 5, 7, . . .

I z [n] = x [n] + y [n], where x [n], y [n] jointly stationary and
statistically independent:

czr (·) = cxr (·) + cyr (·)
Czr (·) = Cxr (·) + Cyr (·)
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HOSA – Pros and Cons

Pros

I Analysis of nonlinearities

I Cumulants are additive for independent processes

I Gaussian noise: HOS zero (blind to Gaussian noise)

Cons

I Difficult to estimate from finite length data

I Influence of window

I Once you have them, how do you interpret them?
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HOSA – Example

I Example for a third-order cumulant
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HOSA – Example

I Example for a Bispectrum
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HOSA – Example

I Example for a PSD
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HOSA – Matlab (1)

I HOSA toolbox, free, included in download-file

I HOSA toolbox manual is a great ressource (Matlab-central)!
I You will need:

I cumest.m used to estimate cumulants
I rpiid.m used to help generating input processes
I gabrrao.m used to calculate window for 2D-FFT
I viscumul3.m and
I visbispec3.m for visualization
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HOSA – Matlab (2)

I cumest.m for third order cumulant calculates just one slice of
the 2D correlation function

for k = -MaxLag : MaxLag

c3(:, k+MaxLag+1) = cumest(#, #, #, #, #, #, k);

end

I Bispectrum calculation: use fftshift(fft2( c3 .* w ))

to have a familiar picture

I Window w[n] obtained from gabrrao.m, optimal smoothing
window, minimum bias in estimation
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Higher order statistics and spectral analysis - Problems (1)

I Limited amount of data leads to higher variance of estimators

I Problem even for ACF → Grows exponentially with order
I This makes visual interpretation much harder:

I When is a Bispectrum zero?
I When is a Bicoherence function flat?
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Higher order statistics and spectral analysis - Problems (2)

I Linear system w. K = 10, driven by white noise (500 samples)
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Higher order statistics and spectral analysis - Problems (2)
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