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Session contents

I Today:
I Nonlinear dynamical systems
I Fixed points and local stability
I Computation of trajectories
I Discrete-time nonlinear maps

I Next time:
I Nonlinear maps with chaotic trajectories:

Bifurcation diagrams and Lyapunov exponents
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Nonlinear dynamics – System representation

I A set of equations (nonlinear)

I In continuous time: Differential equations, flow

ẋ(t) = f (x(t))

I In discrete time: Difference equations, map

x [n + 1] = f (x [n])
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Nonlinear dynamics – State space and trajectories

I Variables in the equations span a phase space

I Can be x1 and x2 for a 2D-eq. or also x and ẋ for a 1D eq.

I Flow: Vector field of diff. eq.: e.g. 2D system with x and y

I Derivatives w.r.t. x and y in region of state space
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Nonlinear dynamics – Fixed points and local stability

I Fixed point: p∗

I At x = p∗, we have ẋ = 0

I Does not mean we are automatically drawn to these points!

I Behaviour of flow/map around p∗ defines local stability

I Find fixed points as solutions of ẋ = 0

I Calculate eigenvectors/-values of Jacobian matrix
(local system linearization) at these points
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Local Stability I

1. eigenvalues (conjugate) complex and

I Real part positive: instable spiral

I Real part negative: stable spiral

2. eigenvalues real and

I Positive: repellor

I Negative: attractor

I Mixed: saddle
+

+
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−
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Local Stability II
3. Real part zero:

I analysis of local stability using linearization does not work
(linearization behaves differently than NL system)

I linear behavior:

4. identical eigenvalues (degenerate node)
I Jacobian matrix can not be diagonalized
I Linearization does not capture behavior of the NL
I stability of linearization similar to NL

I Problem 4.1a as tutorial
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Nonlin. dyn. – Attractors

I A set of points or a subspace in phase space, towards which
trajectories converge after transients die out

I Fixed points are attractors

I Limit cycles are attractors (periodic motion)

I Quasi-periodic motion has an attractor, though same point is
never visited twice

I Strange attractors: Is everything the other attractors are not
I Set of points on which chaotic trajectories move
I Infinite fine structure, fractal set
I Extremely sensitive to initial conditions
I Chaotic trajectories look random, but are not
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Nonlin. dyn. – Discrete time – Maps

I In discrete time: Difference equations, map

x [n + 1] = f (x [n]) e.g . : x [n + 1] = 4rx [n](1− x [n])

I Fixed points x∗ are defined as

x [n + 1] = x [n]

I Stability and behavior will depend on control parameter r
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Nonlinear dynamics – Bifurcation diagram

I Steady-state amplitudes as a function of control parameter

I Transients must have died out!

I E.g.: Logistic map, for r ≈ 0.75, stable FP splits into
two-point-oscillation → limit-cycle

I For r ' 0.88, non-periodic behavior is observed
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Nonlinear dynamics – Lyapunov exponent
I Measure for sensitivity of trajectories to initial condition
I Stable fixed points: Convergence irrespective of initial point
I Instability can be local, overall amplitude still bounded!
I Lyapunov exponent λ: Like pole radius for linear systems

For x [n + 1] = F (x [n]) : λ = lim
N→∞
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Nonlinear dynamics – Lyapunov exponent and bifurcation
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Estimation of Bifurcation diagram and Lyapunov exponent

I Loop over range-of-interest of control parameter r

I Choose an appropriate step size

I For each r : Iterate the map

I Throw away output in transient phase!

I Bifurcation: Record all steady-state amplitudes

I Bifurcation: Plot steady-state amplitudes over range of r

I Lyapunov: Estimate λ by evaluating log of derivative of map
at each x [n], then average

I Lyapunov: Plot estimated λ over r
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