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Session contents

» Today:

» Nonlinear dynamical systems
Fixed points and local stability
Computation of trajectories
Discrete-time nonlinear maps

vV vy

» Next time:

» Nonlinear maps with chaotic trajectories:
Bifurcation diagrams and Lyapunov exponents
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Nonlinear dynamics — System representation

» A set of equations (nonlinear)

» In continuous time: Differential equations, flow

» In discrete time: Difference equations, map

x[n+1] = f(x[n])
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Nonlinear dynamics — State space and trajectories

» Variables in the equations span a phase space
» Can be x; and xp for a 2D-eq. or also x and x for a 1D eq.
» Flow: Vector field of diff. eq.: e.g. 2D system with x and y

» Derivatives w.r.t. x and y in region of state space
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Nonlinear dynamics — Fixed points and local stability

» Fixed point: p*
> At x = p*, we have x =0

» Does not mean we are automatically drawn to these points!

v

Behaviour of flow/map around p* defines local stability

v

Find fixed points as solutions of x =0

v

Calculate eigenvectors/-values of Jacobian matrix
(local system linearization) at these points
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Local Stability |

1. eigenvalues (conjugate) complex and

» Real part positive: instable spiral @

> Real part negative: stable spiral @

2. eigenvalues real and

» Positive: repellor ><
» Negative: attractor ><
» Mixed: saddle X
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Local Stability I

3. Real part zero:

» analysis of local stability using linearization does not work
(linearization behaves differently than NL system)

» linear behavior: @

4. identical eigenvalues (degenerate node)

» Jacobian matrix can not be diagonalized
» Linearization does not capture behavior of the NL
» stability of linearization similar to NL

» Problem 4.1a as tutorial
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Nonlin. dyn. — Attractors

v

A set of points or a subspace in phase space, towards which
trajectories converge after transients die out

v

Fixed points are attractors

v

Limit cycles are attractors (periodic motion)

v

Quasi-periodic motion has an attractor, though same point is
never visited twice

v

Strange attractors: Is everything the other attractors are not

» Set of points on which chaotic trajectories move
» Infinite fine structure, fractal set

» Extremely sensitive to initial conditions

» Chaotic trajectories look random, but are not
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Nonlin. dyn. — Discrete time — Maps

> In discrete time: Difference equations, map
x[n+1] = f(x[n]) e.g.: x[n+ 1] = 4rx[n](1 — x[n])
» Fixed points x* are defined as
x[n+ 1] = x[n]

» Stability and behavior will depend on control parameter r
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Nonlinear dynamics — Bifurcation diagram

v

v

v

Transients must have died out!

Steady-state amplitudes as a function of control parameter

E.g.: Logistic map, for r =~ 0.75, stable FP splits into

two-point-oscillation — limit-cycle

v

Bifurcation diagram

06

Amplitudes
o

04

Amplitudes

[ o1 02

03

For r £ 0.88, non-periodic behavior is observed

Bifurcation diagram
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Nonlinear dynamics — Lyapunov exponent

» Measure for sensitivity of trajectories to initial condition

» Stable fixed points: Convergence irrespective of initial point

» Instability can be local, overall amplitude still bounded!
» Lyapunov exponent A: Like pole radius for linear systems

For x[n+ 1] = F(x[n]) : A= Jim % i: log |F'(x[1])|

Lyapunov exponent
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Nonlinear dynamics — Lyapunov exponent and bifurcation
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Estimation of Bifurcation diagram and Lyapunov exponent

» Loop over range-of-interest of control parameter r

» Choose an appropriate step size

» For each r: Iterate the map

» Throw away output in transient phase!

» Bifurcation: Record all steady-state amplitudes

» Bifurcation: Plot steady-state amplitudes over range of r

» Lyapunov: Estimate A by evaluating log of derivative of map
at each x[n], then average

» Lyapunov: Plot estimated A\ over r
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