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Non-fading memory systems

Nonlinear dynamics, fixed points and stability

In essence1, a flow is the (non)linear set of equations ẋ = f(x) which form a phase space P .
In case of difference equations x[n+ 1] = f(x[n]) such a set of equations is called a map. As
any higher-order differential/difference equation can be transformed into a system of first-order
equations, this definition includes higher-order equations as well.
F(ẋ,x, ẋ(0),x(0)) ∈ P and F(x[n],x[0]) ∈ P are called trajectories. Note that the

trajectories are (have to be) non-intersecting. Thus, each trajectory corresponds to a unique
initial point (ẋ(0),x(0)) and x[0], resp.

Equilibrium (Fixed-, Stationary-) points

A fixed point or equilibrium point x∗ = (x∗0, x
∗
1, . . . , x

∗
N−1) is a point in the phase space

where the trajectory does not evolve if initialized in this point (the trajectory is a point).
Depending on the type of the fixed point (attractor, repellor, ...) the trajectories behave
differently in the vicinity of the fixed point. This local stability is an important property
of a flow or map. A lot of information of the stability of the fixed point can be inferred by
linearizing the system around the fixed point, i.e., by the properties of the system’s Jacobian
matrix evaluated at this fixed point:
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Depending on the eigenvectors/eigenvalues of the Jacobian matrix, the fixed points are
classified as shown on the next page. Each eigenvalue describes the stability in the direction
of the eigenvector. The direction of spirals and centers can be obtained by evaluating the
flow/map close to the fixed point. The derivative in combination with the stability information
gives the direction:

x

y

dx1 dx2

1Note that the mathematical definition of “flow” is a lot more generic.
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1. eigenvalues (conjugate) complex and

• real part positive: instable spiral

• real part negative: stable spiral

2. eigenvalues real and

• positive: repellor

• negative: attractor

• mixed: saddle
+

+

−

−

3. real part of eigenvalues is zero:

• analysis of local stability using linearization does not work (linearization behaves differ-
ently than NL system)

• linear behavior:

4. identical eigenvalues (degenerate node)

• linearization does not capture the full behavior of the NL system

• stability of linearization qualitatively captures stability of the NL system

Problem 4.1
Find and analyze the fixed points of the following equations and plot the flow diagram

(vector plot) using quiver. Experimentally calculate a trajectory using numerical integration:
Use nde1d.m for one-dimensional equations and nde2d.m for two-dimensional ones. Select an
appropriate initial condition.

(a) ẋ = y2 − x; ẏ = 2x− y
(b) ẋ = x− y; ẏ = x2 − 4

Problem 4.2
Perform the same tasks as in Problem 4.1 for the given equations. Modify nde1d.m and

nde2d.m accordingly. Keep in mind that x and y are both functions of time t.

(a) ẋ− ex + cos(x) = 0

(b) ẋ = sin(y); ẏ = cos(x)
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Problem 4.3
A classical system that exhibits chaotic motions for certain parameters is given by the

Lorenz equations

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz

Plot example trajectories for the initial condition [x, y, z]T(t=0) = [0.1, 0.1, 0.1]T . Let σ =

10, b = 8/3 and select r from the set r ∈ {8, 166, 166.7, 28} (use plot3). Let the time
run from 0 to about 100 seconds and use at least 104 points. Also plot x, y and z over time.
Describe your observations! You can use nde3d lorenz.m for the Lorenz equations.

Problem 4.4
Consider the Duffing equation given by

ẍ+ δẋ+ αx+ x3 = B cos(wt)

Different choices of parameters allow this equation to model a large class of oscillators. You
can assume that δ > 0, which represents a damping of the oscillator.

Hint: A higher-order differential equation can be transformed into a system of first-order
differential equations using the state vector z, where in this case z1 = x and z2 = ẋ.

(a) Assume that B = 0. In this case, the equation is also known as the autonomous Duffing
equation, since there is no driving oscillation present. Find and classify the fixed points (Saddle,
Node, . . . ), analyze their local stability and again plot the vector field using quiver. Using
example trajectories, illustrate the behaviour of the fixed points.

(b) Assume that B 6= 0 and ω = 1, which represents a driving oscillation. Use the following
sets of parameters and calculate system trajectories. Plot the time-domain trajectories (x(t)
over t).

1. B = 5, δ = 0.7, α = 0

2. B = 20, δ = 0.17, α = 0

3. B = 0.4, δ = 0.25, α = −1

What is going on in these three cases? You can use any representation of the generated x(t)
(for a sufficiently long amount of time) you like, but you are not allowed to change the system
parameters! You can use the provided function nde_duffing.m that uses global variables for
the parameters.

Problem 4.5
Perform the following tasks for the logistic map:

(a) Find the fixed points and analyze their stability.

(b) Experimentally verify that if r ∈ [0, 0.75], for any x0 ∈ [0, 1] the output xn converges to
the fixed point. Use logistic.m for this task.

(c) Choose r ∈ (0.75, 1) and iterate the map. What has happened this time and why?
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(d) The bifurcation diagram plots the steady-state-amplitudes of a map as a function of the
control parameter (see course notes and problem class presentation!). Plot the bifurcation
diagram for the logistic map for r ∈ [0, . . . , 1] and explain the phenomena that you observe.

(e) Compute the Lyapunov exponent for the logistic map for different values of r (i.e. the
same range as you did in the previous task). The Lyapunov exponent can be approximated as

λ =
1

N

N−1∑
i=0

ln |ḟ(xi)|

where N is a number of available trajectory points xi and ḟ(xi) is a derivative of the map
evaluated at the given point. Plot the Lyapunov exponent over r, compare with the bifurcation
diagram and describe your observations!

Problem 4.6
Perform similar tasks as in the Problem 4.5 for the following map. Be sure to use a large

enough range for both r and x to include the main features of interest. You can easily modify
logistic.m script to implement the given map.

(a) xn+1 = xne−r(1−xn)
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