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Modelling a Paraflex Loudspeaker System

Abstract

In the past few years, development by the likes of M. Morgan J., D. Morgan and J. Vansickl
for a new type of low frequency loudspeaker with high efficiency called "Paraflex" has brought up
an alternative to the well established horn loaded or bass reflex loudspeaker designs for "Public
Address" systems.
This new design is based on so called quarter wave resonators, which are highly related to
acoustic transmission lines as used for "Transmission Line" loudspeaker systems. A lot of research
has been made concerning this type of loudspeaker cabinet, dealing with wave propagation in
acoustic tubes filled with absorbing materials and describing computational methods to deal
with this kind of setup. However, the special configuration of a "Paraflex" loudspeaker with two
transmission lines sitting at the front and back of the loudspeaker driver, merging close to the
open end of the system, has not yet been reviewed.
This work therefore focuses on deriving a computational model for this kind of setup which
yields the possibility of simulating most important system characteristics such as sound pressure
output, phase response or electric impedance for a "Paraflex" loudspeaker cabinet. This is done
by first making use of acoustic transmission line theory to obtain acoustic input impedance of
the respective resonators. Subsequently, the electric analogous circuit of the system containing
lumped elements only is analysed, which crucially makes it possible to compute membrane
velocity as well as input sound pressure to the lines. Finally, output sound pressure can be
obtained by again making use of acoustic transmission line theory. Simulation results of two
specific setups will be discussed at the end of this work.
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1
Introduction

"Public Address" loudspeaker design has always been focused on extending the low frequency
response and increasing efficiency of loudspeaker cabinets to reduce power required for large
venues while providing full range sound at an appropriate level.
This led to the development of various types of loudspeaker cabinets such as bass reflex systems
for better low frequency response as well as horn loaded systems for increased efficiency.
However over the past few years, a new approach for high efficiency cabinets called "Paraflex"
loudspeakers has come up, developed by its founders M. Morgan J., D. Morgan and J. Vansickle
[1].
Like "Transmission Line" systems, this type of loudspeaker is based on quarter wave resonators,
howbeit with a more complex geometric configuration.
Figure 1.1 b) shows the schematic of a "Paraflex" loudspeaker cabinet.

HTR

LTR

HTR

LTR

a) b)

Figure 1.1: a) Parallel Transmission Line System, b) Paraflex Loudspeaker System

It consists of two quarter wave resonators, sitting at the front and back of the loudspeaker
driver. Therefore, acoustic input of the resonators is out of phase by 180 deg. This configura-
tion leads to the system operating similar to a parallel transmission line system, which is two
separate transmission lines sitting at the front and back of the driver respectively as shown in
figure 1.1 a). However, for "Paraflex" loudspeakers, both resonators crucially share the same
mouth opening with a merge close to the output of the system, which is a major difference to
every system having two parallel separate waveguides. This way, the total effective length of
the so called "Low Tuned Resonator" (LTR) can be increased by the length shared with the so
called "High Tuned Resonator" (HTR), which leads to lower tuning.
Different length of the HTR and LTR lead to different resonant frequencies, ideally increasing
the overall bandwidth of the system if tuned strategically [1].
A lot of research has been done concerning "Transmission Line" loudspeaker systems, such as
“An electroacoustic analysis of transmission line loudspeakers" by R. A. Robinson [2], providing
theory on acoustic transmission lines in general as well as a very detailed model for acoustic
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wave propagation in transmission lines filled with fibrous material. Also, works like “A com-
putational model of transmission line loudspeakers" by J. Backman [3], dealing with solutions
on how to compute system characteristics such as sound pressure output for parallel transmis-
sion line configurations as shown in figure 1.1 a). However, no research has been done taking
into account merging transmission lines, sharing the same acoustic output as is the case for
"Paraflex"-like configurations. Therefore, this work focuses on deriving a computational model
for this kind of loudspeaker system, providing necessary information for simulation and devel-
opment of "Paraflex" loudspeakers.
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2
Loudspeaker Model

This chapter focuses on deriving a comprehensive model for loudspeaker enclosures, containing
acoustic as well as mechanic and electric characteristics of the overall system. The modelling
approach is based on analysis of the analogous electric circuit describing the system. Therefore,
to make this work for "Paraflex" loudspeaker enclosures, it is necessary to find a method to
transform the distributed acoustic elements of the quarter wave resonators into lumped elements
in order to be able to perform electric circuit analysis on the model. This will be done by
describing the quarter wave resonators as acoustic transmission lines, replacing the distributed
line elements by their respective input impedance, which will be discussed in chapter 3.

2.1 Deriving the Electric Analogous Circuit

Figure 2.1 shows the electromechanoacoustic analogous circuit of a loudspeaker system, consist-
ing of an electric, mechanic and acoustic domain with lumped elements.

Ig
Ls

Ug

FI

pF

Rm

sm

mm

Rs

F
m

v
m

Za2
Za1

Figure 2.1: Electromechanoacoustic Analogous Circuit of a Loudspeaker System

The acoustic domain is modelled by some arbitrary impedances Za1 and Za2, sitting at the
front and back of the pF converter. These impedances will later be replaced by the respective
input impedances of the quarter wave resonators.
The mechanic domain of the loudspeaker driver is modelled by the elements Rm, sm and mm,
which correspond to mechanic resistance, stiffness and mass respectively.
Also, the electric domain contains the voltage source Ug as well as the ohmic resistance of the
loudspeaker voice coil Rs in series with its inductance Ls.
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For this analogous circuit, pF and FI converters are used to link the respective acoustic, me-
chanic and electric domains. Elements from each domain can be transferred to the next domain
by using the transformation constants of the converters as will be discussed in chapter 2.1.1 and
2.1.2.

2.1.1 Mechanoacoustic Conversion
Figure 2.2 shows the electromechanic analogous circuit of the loudspeaker system after mechano-
acoustic conversion.

Ig
Ls

Ug

FI

Zam1

Rm

sm

mm

Rs

Fm

v
m

Zam2

Figure 2.2: Electromechanic Analogous Circuit

With Sd being the area of the vibrating loudspeaker diaphragm, it is possible to transform
the acoustic elements of figure 2.1 to the mechanic domain.
For an arbitrary acoustic impedance given by

Za =
p

q
(2.1)

the corresponding mechanic impedance is given by

Za =
p

q
= F

v · S2
d

= F

v
· 1

S2
d

= Zm · 1
S2

d

−→ Zm = Za · S2
d (2.2)

with

p = F

Sd
... sound pressure

q = v · Sd ... volume velocity
F ... force
v ... velocity
Zm ... mechanic impedance

Therefore, the transformed mechanic impedances Zam, corresponding to the impedances Za

of the acoustic domain, can be calculated as follows:

Zam = Za · S2
d (2.3)
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2.1.2 Electromechanic Conversion
With the electromechanic analogous circuit at hand, it is possible to use the FI converter to
transfer all elements contained in the mechanic circuit of figure 2.2 to the electric domain.
According to [4], mechanic components Rm, sm and mm can be transformed to equivalent electric
resistance, inductance and capacitance Rme, Lme and Cme by making use of the FI converter as
follows:

Rme = Bl2

Rm
Lme = Bl2

sm
Cme = mm

Bl2
(2.4)

Bl ... force factor of the loudspeaker driver
[

N
A

]
Also, with an arbitrary mechanic impedance being transformed as follows:

Zm = F

v
= I · Bl2

U
= I

U
· Bl2 = 1

Ze

· Bl2 −→ Ze = Bl2

Zm

(2.5)

with

F = I · Bl

v = U

Bl
I ... electric current
U ... electric voltage
Ze ... electric impedance

electric equivalents Zae of the acoustic impedances Za can be computed:

Zae = Bl2

Zam

= Bl2

Za · S2
d

(2.6)

This leads to the final electric analogous circuit shown in figure 2.3.

Ig
Ls

Ug

Rme
Rs Zae1 Zae2Lme Cme

UM

I1 I2

Figure 2.3: Electric Analogous Circuit

If impedances Zae1 and Zae2 are known, we can perform electric circuit analysis to obtain
all wanted circuit quantities. This includes velocity of the loudspeaker diaphragm, which cor-
responds to voltage UM , or input sound pressure of the transmission lines corresponding to
currents I1 and I2. In figure 2.3, the phase shift of 180° between front and back of the driver is
not yet visible, but will be dealt with in chapter 4.
With the electric analogous circuit at hand, the next chapter discusses transmission line theory
to obtain acoustic input impedance of a line.
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3
Acoustic Transmission Line Theory

In this chapter, theory for acoustic transmission lines is discussed. This leads to sound pressure
and acoustic impedance of the line dependent on location x in the line, which will then be
utilized to calculate input impedance of the transmission lines as discussed in chapter 2 as well
as acoustic output of the lines.

3.1 The Acoustic Transmission Line
Figure 3.1 shows an acoustic transmission line powered by a vibrating piston with velocity vm

at location x = 0.

vm

L

x = 0 x = L

p(L)p(0)
q(0) q(L)

A

Figure 3.1: Acoustic Transmission Line

The line is of length L and terminates with acoustic impedance

Za(L) =
p(L)
q(L) (3.1)

To derive the impedance and sound pressure distribution at any point x in the line, we discuss
wave propagation in an acoustic transmission line by cutting it into very small segments and
building the analogous electric circuit with respective acoustic elements.
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3.2 Electroacoustic Solution
According to [2], an infinitesimal small line segment of length ∆x can be described by the electric
analogous circuit shown in figure 3.2.

p(x)

q(x)

ma

Ca

xΔ

p(x+ x)Δ

q(x + x)Δ

Figure 3.2: Infinitesimal Small Line Segment

In this circuit, ma and Ca are the acoustical mass and compliance of the air enclosed in the
respective line segment with length ∆x, represented by the electric impedances of an inductor
and capacitor respectively. According to [2], these can be calculated by multiplying the acoustic
mass per unit length mua and compliance per unit length Cua with the segment length ∆x:

mua = ρ0
A

=⇒ ma = mua · ∆x (3.2)

Cua = A

ρ0 · c2 =⇒ Ca = Cua · ∆x (3.3)

A ... cross sectional area of transmission line
ρ0 ... air density
c ... sound propagation velocity

For harmonic oscillation, each line segment of length ∆x can be described by the following
equations:

p(x + ∆x) = p(x) − ȷω · mua∆x · q(x) (3.4)

q(x + ∆x) = q(x) − ȷω · Cua∆x · p(x + ∆x) (3.5)

By rearranging, we get:

p(x + ∆x) − p(x)
∆x

= −ȷωmua · q(x) (3.6)

q(x + ∆x) − q(x)
∆x

= −ȷωCua · p(x + ∆x) (3.7)
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By shrinking ∆x to 0, we obtain the following differential equations:

dp(x)
dx

= −ȷωmua · q(x) (3.8)

dq(x)
dx

= −ȷωCua · p(x) (3.9)

Taking the second derivative, we get:

d2p(x)
dx2 = −ȷωmua ·

dq(x)
dx

(3.10)

d2q(x)
dx2 = −ȷωCua ·

dp(x)
dx

(3.11)

By substituting equations 3.8 and 3.9, we get:

d2p(x)
dx2 = −ω2 · mua · Cua · p(x) (3.12)

d2q(x)
dx2 = −ω2 · Cua · mua · q(x) (3.13)

This can be solved for q(x) and p(x) by making an educated guess as follows:

p(x) = p0+ · e−Γ·x + p0− · eΓ·x (3.14)

q(x) = q0+ · e−Γ·x + q0− · eΓ·x (3.15)

where

p0+ ... sound pressure amplitude of wave propagating in forward direction

p0− ... sound pressure amplitude of wave propagating in backward direction

q0+ ... volume velocity amplitude of wave propagating in forward direction

q0− ... volume velocity amplitude of wave propagating in backward direction

Γ ... propagation coefficient of the material in the line
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Using 3.14 in equation 3.12, we get:

Γ2 · p(x) = −ω2 · Cua · mua · p(x) (3.16)

Γ2 = −ω2 · Cua · mua =⇒ Γ = ȷω ·
√

Cua · mua = ȷω ·
√

A · ρ0
A · ρ0 · c2 = ȷ · ω

c
(3.17)

Further, equation 3.14 needs to satisfy equation 3.8, so we get:

−Γ · p0+ · e−Γ·x + Γ · p0− · eΓ·x = −ȷωmua · q(x) (3.18)

q(x) = Γ
ȷωmua

· p0+ · e−Γ·x − Γ
ȷωmua

· p0− · eΓ·x =
p0+ · A

ρ0 · c
· e−Γ·x −

p0− · A

ρ0 · c
· eΓ·x

!= q0+ · e−Γ·x + q0− · eΓ·x (3.19)

This yields the following relations:

q0+ =
p0+ · A

ρ0 · c
=

p0+
ZC

(3.20)

q0− = −
p0− · A

ρ0 · c
= −

p0−
ZC

(3.21)

ZC = ρ0 · c

A
(3.22)

where

ZC ...Characteristic impedance of acoustic line with cross sectional area A

3.2.1 Reflection Coefficient
If we want to find a solution for the acoustic impedance of the line Za(x) as well as acoustic
pressure p(x), we first need to find p0−.
If we have a look at the boundary condition of the line where x = L, the following relation must
hold:

Za(L) =
p(L)
q(L) =

p0+ · e−Γ·L + p0− · eΓ·L

q0+ · e−Γ·L + q0− · eΓ·L = ZC ·
p0+ · e−Γ·L + p0− · eΓ·L

p0+ · e−Γ·L − p0− · eΓ·L (3.23)

– 9 –
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Solving for p0−, we get:

p0− = p0+ · Za(L) − ZC

Za(L) + ZC
· e−2·Γ·L = p0+ · rL · e−2·Γ·L (3.24)

rL = Za(L) − ZC

Za(L) + ZC
. . . reflection coefficient at x = L (3.25)

3.2.2 Acoustic Impedance

With all this at hand, the acoustic impedance Za(x) at any arbitrary point x in the transmission
line can be computed as follows:

Za(x) =
p(x)
q(x) =

p0+ · e−Γ·x + p0− · eΓ·x

q0+ · e−Γ·x + q0− · eΓ·x = ZC ·
p0+ · e−Γ·x + p0− · eΓ·x

p0+ · e−Γ·x − p0− · eΓ·x

= ZC ·
p0+ · e−Γ·x + p0+ · rL · e−2·Γ·L · eΓ·x

p0+ · e−Γ·x − p0+ · rL · e−2·Γ·L · eΓ·x = ZC ·
p0+ · e−Γ·x ·

(
1 + rL · e−2·Γ·L · e2·Γ·x

)
p0+ · e−Γ·x · (1 − rL · e−2·Γ·L · e2·Γ·x)

Za(x) = ZC · 1 + rL · e−2·Γ·(L−x)

1 − rL · e−2·Γ·(L−x) (3.26)

This makes it possible to compute the acoustic input impedance Za(0) of the transmission
line seen by the loudspeaker diaphragm only by knowing ZC , the acoustic impedance Za(L)
terminating the line as well as the length L of the line.

3.2.3 Acoustic Pressure

By making use of equation 3.14 and 3.24, we can solve for the acoustic pressure at any point x
in the line:

p(x) = p0+ ·
(
e−Γ·x + rL · e−2·Γ·L · eΓ·x

)
= p0+ · e−Γ·x ·

(
1 + rL · e−2·Γ·(L−x)

)
(3.27)

To find p0+, we make use of the following relations:

Za(0) · q(0) = p(0) = p0+ ·
(
1 + rL · e−2·Γ·L

)

−→ p0+ =
Za(0) · q(0)

(1 + rL · e−2·Γ·L) (3.28)

p(x) =
Za(0) · q(0)

(1 + rL · e−2·Γ·L) · e−Γ·x ·
(
1 + rL · e−2·Γ·(L−x)

)
(3.29)

– 10 –



3.3 Transmission Line with Changing Cross Sectional Area

If we now manage to obtain acoustic input impedance Za(0) with equation 3.26 as well as
input volume velocity q(0) of the lines corresponding to UM in figure 2.3, we are able to compute
sound pressure p(x) at any point x in the line.

3.3 Transmission Line with Changing Cross Sectional Area
Figure 3.3 shows an acoustic transmission line with stepwise changing cross sectional area A as
a function of x.

vm

L1

x = 0
x = L

p(L)p(0)

q(0) q(L)

L2 L3

p(L1+L2)

q(L1+L2)

p(L1)

q(L1)
A

1
A

2
A

3

Figure 3.3: Stepped Transmission Line

This can be modelled as a cascade of line segments, each with different area and therefore
different characteristic acoustic impedance ZC .
By applying computations derived in chapter 3.2, [3] suggests that this cascade can be analysed
by starting with the segment closest to the open end of the line, computing its input impedance
and then using it as the load to the next line segment. This way, input impedance of the whole
line can be computed. Acoustic sound pressure and volume velocity can be obtained by starting
at the line segment closest to the input of the overall line, computing its output pressure and
volume velocity, using it as input to the next line segment, continuing respectively.
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4
Paraflex Loudspeaker Analysis

By applying the knowledge gained from chapter 3, the following chapter first focuses on obtaining
the acoustic input impedance of the HTR and LTR of a "Paraflex" loudspeaker. This then is
used to perform electric circuit analysis of the electric analogous circuit derived in chapter 2,
which leads to the overall electric impedance of the system seen by the voltage source, as well
as diaphragm velocity and input sound pressure to the lines.
Eventually, acoustic output pressure of the lines can be computed, leading to sound pressure
response of the overall system. Therefore, after discussing the necessary computational steps,
we are able to obtain all the wanted system characteristics from the model.

4.1 Paraflex System Setup
Figure 4.1 shows a general "Paraflex" system, consisting of two quarter wave resonators that are
linked at an arbitrary point xJ . The transmission lines with length L1 and L3 correspond to the
HTR and the line with length L2 to the LTR respectively. Also, L3 corresponds to the shared
length mentioned in chapter 1, increasing the total length of the LTR.

v
m

L
2

Za(xJ)
Zaf(0)Zab(0)

L
1 Za(L1+L3)L

3

Figure 4.1: Paraflex System

This system can be decomposed into three transmission lines as shown in figure 4.2.
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4.1 Paraflex System Setup

v
m

x = 0 x = L
1

Zaf(0)
Za(L1) = Za(xJ)A

1

L
1

v
m

x = 0 x = L
2

Zab(0)
A2

L2

a)

b)

x = L
1

x = L
1
+L

3

A1

L3

c)

Za(xJ) Za(L1+L3) 

Za(L2) = Za(xJ)

Figure 4.2: a) High Tuned Resonator Transmission Line b) Low Tuned Resonator Transmission Line
c) Shared Transmission Line

The HTR is composed of two distinct acoustic transmission lines. The first one is of length
L1 with cross sectional area A1 ≥ Sd and acoustic impedance Za(xJ) at point x = L1 where the
LTR merges into the HTR.
The second one is of length L3 with same cross sectional area A1 and acoustic input impedance
Za(xJ) as well as load impedance Za(L1 + L3).

The LTR is of length L2 (L2 > L1 > L3) with cross sectional area A2 ≥ Sd and acoustic
impedance Za(xJ) at point x = L2 which is the same point as x = L1 in the HTR. Therefore,
Za(xJ) is the acoustic impedance linking the three separate transmission lines.

In the following, these three resonator systems will be used to calculate acoustic input impedances
to the lines Zaf (0) and Zab(0). This then will lead to acoustic volume velocity by analysis of
the electric analogous circuit which eventually enables us to compute sound pressure at the
output of the overall system by making use of equations derived in chapter 3 while matching
the interface conditions of the two resonators.
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4 Paraflex Loudspeaker Analysis

4.2 HTR and LTR Impedances
Acoustic input impedance Zaf (0) of the HTR can be computed with equation 3.26. For this, it
is necessary to know the acoustic impedance Za(L1 + L3) terminating the line. As the open end
of the system is assumed to sit in an infinite baffle, its acoustic impedance given by [4] can be
used:

Za(L1 + L3) =
p(L1 + L3)
q(L1 + L3) = Zib = Z0

A1
·
[
1 − 2 · J1(2ka)

2ka
+ 2ȷ · H1(2ka)

2ka

]
(4.1)

where

p(L1 + L3) ... complex sound pressure at x = L1 + L3

q(L1 + L3) ... complex volume velocity at x = L1 + L3

Z0 = ρ0 · c ... acoustic impedance of a plane wave
J1 ... Bessel function of first order
H1 ... Struve function of first order
k ... wave number
a ... radiating area radius

With this, we are able to calculate Zaf (0) as follows:

rL3 = Zib − ZC1

Zib + ZC1
with ZC1 = Z0

A1
(4.2)

Zaf (0) = ZC1 ·
1 + rL3 · e−2·Γ·(L1+L3)

1 − rL3 · e−2·Γ·(L1+L3) (4.3)

As the LTR with length L2 joins the HTR at xJ , to compute Zab(0) we first need to calculate
acoustic impedance Za(xJ), which is the termination impedance seen by the LTR. Using equation
3.26, we get

Za(xJ) = ZC1 ·
1 + rL3 · e−2·Γ·L3

1 − rL3 · e−2·Γ·L3
(4.4)

Now, Zab(0) can be computed by again using equation 3.26, with Za(xJ) being the termination
impedance of the LTR:

rL2 = Za(xJ) − ZC2

Za(xJ) + ZC2
with ZC2 = Z0

A2
(4.5)

Zab(0) = ZC2 ·
1 + rL2 · e−2·Γ·L2

1 − rL2 · e−2·Γ·L2
(4.6)
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4.3 Electric Analogous Circuit Analysis

Figure 4.3 again shows the electric analogous circuit obtained in chapter 2.
The arbitrary impedances Zae1 and Zae2 transformed in chapter 2 have now been replaced by the
known electric impedances ZT L1e and ZT L2e, which correspond to the input impedance of the
HTR

[
Zaf (0)

]
and LTR [Zab(0)], calculated with equation 4.3 and 4.6 respectively. Therefore,

we now are able to perform electric circuit analysis to obtain UM , IT L1 and IT L2 as well as total
electric input impedance Ze.

Ig

Ls

Ug

Rme
Rs ZTL1e ZTL2e

Lme Cme

UM

ITL1 ITL2

Ze

Figure 4.3: Electric Analogous Circuit

4.3.1 Electric Input Impedance

Total electric input impedance Ze is given by the series combination of elements Rs and Ls

with the parallel circuit of elements Rme, Lme, Cme, ZT L1e and ZT L2e. The simplified circuit is
shown in figure 4.4.

Ig

Ug UM

Z1

Z2

Figure 4.4: Simplified Electric Analogous Circuit

Admittance Y 2 of the parallel circuit is given by:

Y 2 = 1
Rme

+ 1
ȷωLme

+ ȷωCme + 1
ZT L1e

+ 1
ZT L2e

(4.7)

As

Z1 = Rs + ȷωLs (4.8)

the total electric input impedance of the circuit is given by:
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4 Paraflex Loudspeaker Analysis

Ze = Z1 + Z2 = Z1 + 1
Y 2

= Rs + ȷωLs + 1
1

Rme
+ 1

ȷωLme
+ ȷωCme + 1

ZT L1e
+ 1

ZT L2e

(4.9)

4.3.2 Acoustic Input Volume Velocity and Sound Pressure
In figure 4.4, UM corresponds to the diaphragm velocity of the loudspeaker driver or the input
volume velocity q(0) to the lines. It can be computed by applying a voltage divider as follows:

UM = Ug · Z2
Z1 + Z2

(4.10)

With

vM = UM

Bl
(4.11)

and

q(0) = vM · Sd (4.12)

we get

q(0) = Ug · Z2
Z1 + Z2

· Sd

Bl
(4.13)

As UM is the voltage drop over ZT L1e and ZT L2e, we can make use of Ohm’s Law to compute
IT L1 and IT L2:

IT Li = UM

ZT Lie

(4.14)

Therefore, since

F T Li = IT Li · Bl (4.15)

and

p
T Li

= F T Li

Sd
(4.16)

we are able to compute input sound pressure to the HTR (p
T L1) and input sound pressure to

the LTR (p
T L2) as follows:

p
T Li

= UM

ZT Lie

· Bl

Sd
(4.17)

This enables us to compute sound pressure at the output of the lines as will be discussed
in the next chapter, using equation 4.13 for q(0) in equation 4.18 and 4.19. As input volume
velocity to the lines is inverted by 180°, this has to be taken into account by applying a negative
sign to q(0) for one of the resonators, as done in equation 4.19.

– 16 –



4.4 Output Sound Pressure

4.4 Output Sound Pressure
As discussed in chapter 3.2, output sound pressure of a transmission line with given input can
be calculated using equation 3.29.
As for a "Paraflex" system, the LTR joins with the HTR at point xJ , we have to compute sound
pressure of both lines at this point of interest:

p
L1

(xJ) = p
L1

(L1) =
Zaf (0) · q(0)(

1 + rL1 · e−2·Γ·L1
) · e−Γ·L1 ·

(
1 + rL1

)
, rL1 = Za(xJ) − ZC1

Za(xJ) + ZC1
(4.18)

p
L2

(xJ) = p
L2

(L2) =
Zab(0) · (−q(0))(
1 + rL2 · e−2·Γ·L2

) · e−Γ·L2 ·
(
1 + rL2

)
, rL2 = Za(xJ) − ZC2

Za(xJ) + ZC2
(4.19)

The total pressure at x = xJ is then given by the complex sum of both lines:

p(xJ) = p
L1

(L1) + p
L2

(L2) (4.20)

Finally, it is possible to compute total acoustic output of the system by again making use
of equation 3.29, with L3 being the length of the remaining line from point x = L1 to point
x = L1 + L3 and Za(xJ) being its input impedance as well as q(xJ) being its input volume
velocity at x = xJ :

q(xJ) =
p(xJ)

Za(xJ) (4.21)

p(L3) =
Za(xJ) · q(xJ)(

1 + rL3 · e−2·Γ·L3
) · e−Γ·L3 ·

(
1 + rL3

)
(4.22)

4.5 Output Sound Pressure at One Meter
For representative comparison of the sound pressure level generated by different loudspeaker
cabinets, output sound pressure is usually computed at one meter distance from the system
output. According to [2], for a known volume velocity q(r = 0) at the system output sitting in
an infinite baffle, the sound pressure at distance r is given by:

p(r) = ȷωρ0 · q(r = 0) · e−ȷ·k·r

2πr
(4.23)

The volume velocity q(r = 0) at the output can be computed using the output sound pressure
of the system p(L1 + L3) obtained with equation 4.22 and the acoustic load impedance Zib:

q(r = 0) =
p(L1 + L3)

Zib

(4.24)
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4 Paraflex Loudspeaker Analysis

Therefore, we are able to compute sound pressure at one meter distance from the system
output p(1) as follows:

p(1) = ȷωρ0 · q(r = 0) · e−ȷ·k

2π
= ȷωρ0 ·

p(L1 + L3)
Zib

· e−ȷ·k

2π
(4.25)

Eventually, sound pressure level can be computed:

Lp = 20 · log


∣∣∣p(1)

∣∣∣
p0

 (4.26)

p0 = 20 µPa ... reference sound pressure
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Modelling a Paraflex Loudspeaker System

5
Simulation Results

After obtaining the necessary equations to compute sound pressure as well as acoustic impedance
of a transmission line system at any point of interest and applying computations to the more
complex model of a "Paraflex" system, this chapter presents simulation results for two distinct
test cases. First, a very simple configuration of an acoustic transmission line loudspeaker system
is simulated to build deeper understanding for how quarter wave resonators work. Consequently,
the second test case treats a "Paraflex" loudspeaker configuration as described in chapter 4.

5.1 Simulation of a Transmission Line System

Figure 5.1 shows the configuration of the transmission line system for the first test case. The
front side of the membrane as well as the output end of the acoustic transmission line are assumed
to sit in an infinite baffle, therefore acoustic impedance at those points of interest must be equal
to the acoustic impedance described in equation 4.1. Changes for Zib due to interaction between
both outputs are neglected. The line is of two meters length with the shape of a cylindrical
tube and cross sectional area of 1000 cm2 (equal to a diameter of d = 36 cm). The bend in the
transmission line is assumed not to have any effects on acoustic performance of the transmission
line.

2m

1000 
cm²

Zib

Za(0)

p(2)

p(0)
Z

ib

Figure 5.1: Simulated Transmission Line System
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5 Simulation Results

The transmission line system is powered by a loudspeaker driver with the following parameters:

Sd = 841 cm2 (d = 33 cm)

Bl = 26.7 N

A
Mmd = 162 g

Cms = 90 µm
N

Rms = 4.4 kg
s

Rs = 5.4 Ω
Ls = 1.6 mH

Input peak voltage of the voltage source Ug is equal to one volt.

5.1.1 Acoustic Input Impedance
Figure 5.2 shows the absolute value of the acoustic input impedance to the line Za(0) computed
with equation 3.26.
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Figure 5.2: Acoustic Input Impedance of the Transmission Line System

Distinct peaks in amplitude can be observed, which correspond to the resonant frequencies of
the line. As mentioned before, quarter wave resonators are designed to resonate at frequencies
where the length of the line corresponds to odd multiples of their quarter wave lengths. These
can be calculated as follows:

fk = (2k + 1) · c

4 · L
, k ∈ N0 (5.1)
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5.1 Simulation of a Transmission Line System

This results in resonant frequencies that are odd multiples of 43 Hz for the line with length
L = 2 in figure 5.1:

fk = (2k + 1) · 344
4 · 2 = (2k + 1) · 43 (5.2)

However, resonance peaks in figure 5.2 appear at frequencies slightly shifted down from the
ones calculated in equation 5.2.
If we have a look at equation 3.24, the reflected wave p0− experiences a phase shift at the open
end of the line, dependent on the reflection coefficient rL. For low frequencies (≪ 40 Hz), as the
real part of the load impedance Za(L) = Zib is much smaller then the characteristic impedance
ZC of the line, the reflection coefficient rL given by equation 3.25 approximately equals −1,
which is equal to a phase shift of 180° for the reflected sound pressure wave. A phase shift of
180° leads to positive sound pressure interference and consequently series resonance at x = 0 for
frequencies with quarter wavelength equal to the length of the line, as this leads to the reflected
sound pressure wave arriving at x = 0 after the membrane has done half a cycle (corresponding
to 180° phase shift), therefore adding up in phase with the membrane oscillation.
However, for the fundamental resonant frequency of the line at 40 Hz and frequencies above,
the reflection coefficient adds less phase shift to the reflected wave, as the load impedance starts
to increase. Subsequently, resonance happens at frequencies slightly lower than the expected
quarter wave frequency, as for positive interference of sound pressure at x = 0, the loudspeaker
membrane now needs to travel less than half a cycle for membrane oscillation and reflected
sound pressure wave to add up in phase at x = 0. Table 5.1 shows the reflection coefficients and
corresponding phase shift for the first three resonant frequencies of the transmission line system
in figure 5.1.

fr rL(fr) ∠rL(fr)

40 −0.96 + ȷ · 0.21 167.3°

120 −0.71 + ȷ · 0.5 144.3°

200 −0.43 + ȷ · 0.59 125.5°

Table 5.1: Reflection Coefficient at Resonant Frequencies fr

For these to be resonant frequencies, the membrane needs to experience the same phase change
as the reflected wave in the time needed for the sound pressure wave to propagate forth and
back through the line so both add up in phase. Therefore, these frequencies need to satisfy the
following equation:

∠rL(fr) != 2 · L

c
· 360° · fr (5.3)

where

∠rL(fr) ... phase shift of the reflected wave at fr

2 · L

c
... time needed for forward and backward propagation

360° · fr ... membrane phase shift per second at fr
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5 Simulation Results

The first three resonant frequencies have been highlighted in figure 5.2. A small deviation in
phase shift for equation 5.3 due to numerical errors can be neglected. Note how the absolute
shift in frequency compared to resonant frequencies calculated with equation 5.1 increases for
higher resonant frequencies. This is due to the load impedance approaching the characteristic
impedance of the line and therefore less phase shift being added to the reflected wave, resulting
in lower resonant frequency as mentioned above.

5.1.2 Electric Input Impedance

Figure 5.3 shows the absolute value of the electric input impedance of the system computed
with equation 4.9, where the electric equivalent of the acoustic impedance of a vibrating piston
in an infinite baffle Zib has been used for ZT L2e and the electric equivalent of the acoustic
input impedance to the transmission line Za(0) calculated with equation 3.26 has been used for
ZT L1e in figure 4.3. These correspond to the acoustic impedance sitting at the back and front
of the membrane respectively. The electric equivalents of the acoustic impedance faced by the
membrane as well as mechanic impedance of the loudspeaker driver are shown as well.
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Figure 5.3: Total Electric Input Impedance of the Transmission Line System and Electric Equivalents of
Acoustic and Mechanic Impedances

Again, distinct peaks in amplitude can be observed, with the first three peaks sitting at 24 Hz,
60 Hz and 128 Hz. As with a simple loudspeaker driver in free air, peaks in electric impedance
are caused by backward induced electric current due to large driver motion. As can be seen in
figure 4.3, total electric impedance Ze corresponds to the series resistance of the drivers voice coil
elements and the parallel circuit of mechanic and acoustic impedance equivalents in the electric
domain. This results in low or high total electric impedance where the parallel combination of
acoustic and mechanic impedance equivalents is low or high respectively. Subsequently, peaks of
total electric impedance and therefore high driver motion at these frequencies dependent on the
relation of mechanic impedance resonance of the driver and acoustic impedance resonancies of
the transmission line. Also we can observe that at the resonant frequencies of the acoustic input
impedance to the line of 40 Hz, 120 Hz and 200 Hz found in chapter 5.1.1, the electric input
impedance is at a minimum which means there is minimum membrane motion at this point.
Here, total impedance of the parallel circuit is dominated by the acoustic impedance equivalent
in the electric domain which leads to low driver motion due to high acoustic input impedance
to the line at this particular frequencies, opposing the drivers motion.
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5.1 Simulation of a Transmission Line System

5.1.3 Input and Output Sound Pressure
Figure 5.4 shows the input and output sound pressure of the transmission line corresponding to
p(0) and p(2) in figure 5.1, computed with equation 3.29.
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Figure 5.4: Input and Output Sound Pressure of the Transmission Line

For the input as well as output sound pressure of the line, we can observe resonance at 39 Hz,
123 Hz and 204 Hz, which are about the resonant frequencies found in chapter 5.1.1. The slight
shift in frequency of about 1 Hz, 3 Hz and 4 Hz respectively will need further investigation, as
this exceeds the limits of this work. As at low frequencies, most of the sound pressure wave is
reflected at the open end of the line, there is a rather big difference in amplitude of input and
output sound pressure. With increasing frequency though, there is less reflection and the output
sound pressure approaches that at the input of the line.

5.1.4 Sound Pressure Level at One Meter
Figure 5.5 shows the sound pressure level of the front of the driver at one meter distance and
the output of the transmission line at one meter distance, computed with equation 4.25 and
4.26. If we assume both the membrane and the open end of the line to have equal distance of
one meter to the point of interest, we can compute the total sound pressure level at this point
by using the complex sum of both sound pressures at this point for p(1) in equation 4.26. This
is also shown in figure 5.5.

At the frequencies of high sound pressure at the output of the transmission line found in
chapter 5.1.3, total system sound pressure is dominated by the transmission line. At the resonant
frequencies found in chapter 5.1.1, the membrane is facing high acoustic impedance which leads
to low membrane movement and therefore low sound pressure output at the front of the driver.
However, resonance in the line still leads to high output of the overall system, clearly visible
in the total sound pressure response with peaks repeating for every frequency of high sound
pressure output found in figure 5.4. As can be seen in figure 5.5, the working bandwidth of a
"Transmission Line" loudspeaker as shown in figure 5.1 is limited to about the second resonant
frequency of the line, as there is a significant dip in sound pressure level above that frequency.
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Figure 5.5: Sound Pressure Level of the Transmission Line at One Meter

5.1.5 Sound Pressure Modes

Figure 5.6 shows the absolute value of sound pressure at every point x in the line for the first two
resonant frequencies visible in figure 5.4 being 40 Hz and 123 Hz, as well as resonant frequencies
calculated with equation 5.1 being 43 Hz and 129 Hz.
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Figure 5.6: Sound Pressure Modes

Note that the quarter wave frequencies calculated with equation 5.1 have standing waves
slightly shifted towards the open end of the line compared to quarter wave resonances found in
figure 5.4, as positive interference does not happen exactly at x = 0 due to the phase shift for
the reflected sound pressure wave at the open end of the line being less than 180°.
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5.2 Simulation of a Paraflex System
Figure 5.7 shows the configuration of the "Paraflex" system for the second test case. Again, the
output of the system is assumed to sit in an infinite baffle, therefore acoustic impedance at this
point must be equal to acoustic impedance given in equation 4.1.

2.5m

Za(xJ)
Zaf(0)Zab(0)

0.5m Z
ib0.2m2000

cm²

2000
cm²

Figure 5.7: Simulated Paraflex System

The HTR is of total length 0.7 m, composed out of two transmission line segments with length
0.5 m and 0.2 m and the same cross sectional area of 2000 cm2 (d = 50 cm), while the LTR
consists of one transmission line segment of length 2.5 m and 2000 cm2 cross sectional area. As
mentioned in chapter 4.1, the segment of length 0.2 m corresponds to the segment of the HTR
shared with the LTR, therefore, total effective length of the LTR is equal to 2.7 m. As will be
shown in chapter 5.2.1 the fundamental resonant frequency of the LTR indeed corresponds to a
length of 2.7 m, however, this will need further confirmation by measurements as the simulated
model assumes the shared segment to be effective for the LTR.

The system is powered by a loudspeaker driver with the following parameters:

Sd = 855 cm2 (d = 33 cm)

Bl = 28.4 N

A
Mmd = 161 g

Cms = 133 µm
N

Rms = 8.4 kg
s

Rs = 5.1 Ω
Ls = 1.9 mH

Again, input peak voltage of the voltage source Ug is equal to one volt.
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5.2.1 Acoustic Input Impedance
Figure 5.8 shows the absolute value of the acoustic input impedance to the HTR and LTR at
the front and back of the loudspeaker driver respectively, computed with equation 4.3 and 4.6.
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Figure 5.8: Acoustic Input Impedances of the Paraflex System

As both transmission line segments of the HTR are of the same cross sectional area, they
can be seen as one long resonator of total length LHT R = 0.7 m. This results in fundamental
resonance frequency of about 123 Hz if calculated with equation 5.1. As highlighted in figure
5.8, this is shifted down to 95 Hz due to a respective phase shift happening at the open end
of the line as discussed in chapter 5.1.1, effectively increasing the length of the transmission
line segment. Also, the second and third resonance of the HTR being 302 Hz and 525 Hz are
highlighted in figure 5.8.
For the LTR, total length from source to the open end of the line is equal to 2.7 m, which
corresponds to a fundamental resonance sitting at about 32 Hz. As highlighted in figure 5.8,
this again is shifted down to 29.5 Hz, which is equal to a quarter wavelength of about 2.9 m.
This again corresponds to the increase of effective length of the LTR from source to the open end
of the system due to a phase shift smaller than 180° for the reflected wave. With fundamental
resonance of the LTR corresponding to the total length from source to mouth of 2.7 m, we can
conclude, that the shared line segment of 0.2 m length adds up to the total length of the LTR,
consequently lowering fundamental resonance frequency as mentioned in chapter 1. Again, the
second and third resonance of the LTR being 88 Hz and 148 Hz are highlighted as well.

5.2.2 Electric Input Impedance
Figure 5.9 shows the absolute value of the electric input impedance of the system computed
with equation 4.9, with ZT L1e being the electric equivalent of the acoustic input impedance to
the HTR and ZT L2e being the electric equivalent of the acoustic input impedance to the LTR.
Again, electric equivalents of the total acoustic impedance faced by the membrane as well as the
mechanic impedance of the loudspeaker driver are shown as well.
Like in chapter 5.1.2, peaks in total electric input impedance correspond to high driver motion
and minimum impedance corresponds to minimal driver motion at resonant frequencies of the
transmission lines. Therefore we get minimum electric input impedance at resonant frequencies
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of the LTR being 29.5 Hz, 88 Hz and 148 Hz as well as resonant frequencies of the HTR being
95 Hz, 302 Hz and 525 Hz, although not being significant for the second and third resonance of
the HTR.
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Figure 5.9: Electric Input Impedance of the Paraflex System

5.2.3 Sound Pressure at xJ

Figure 5.10 shows the absolute value of the sound pressure of the HTR [pL1(xJ)] and LTR
[pL2(xJ)] at xJ , computed with equations 4.18 and 4.19, as well as total sound pressure p(xJ)
at xJ given by equation 4.20.
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Figure 5.10: Sound Pressure at xJ

Peaks in sound pressure of the HTR and LTR can be seen at about the resonant frequencies
found in chapter 5.2.1, again including a small shift that will need further investigation. Complex
addition of these sound pressures leads to total sound pressure p(xJ) at xJ . If we have a look
at the phase diagram of the respective sound pressures at xJ in figure 5.11, we can see phase
coherence and therefore positive interference of pL1(xJ) and pL2(xJ) for most of the frequencies
between 29.5 Hz and 148 Hz. Only at about 92 Hz, some deviation in phase appears, therefore
there is some amount of cancellation occurring in the total response as can be seen in figure
5.10.
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Figure 5.11: Phase at xJ

At frequencies above 148 Hz, phase relation between sound pressure of the HTR and LTR
leads to alternating positive addition and negative cancellation due to larger deviation in phase.
Therefore, the working bandwidth of a "Paraflex" loudspeaker system is limited to frequencies
of about the third resonant frequency of the LTR.
Figure 5.10 also shows minimum sound pressure for the HTR at resonant frequencies of the
LTR, the first three being 29.5 Hz, 88 Hz and 148 Hz. As can be seen in figure 5.9, electric
input impedance is at minimum for these frequencies corresponding to minimal driver motion
at these points of interest. As the HTR is not at resonance at these frequencies, minimal driver
motion leads to minimal sound pressure generated, resulting in the mentioned dips in response.
For resonant frequencies of the HTR though, there does not seem to be significant influence on
sound pressure generated by the LTR.

5.2.4 Output Sound Pressure
Output sound pressure of the system can be calculated with equation 4.22. This is shown in
figure 5.12.
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Figure 5.12: Output Sound Pressure

As one can see, the output sound pressure is very similiar to the one obtained at x = xJ

shown in figure 5.10 and can further be used to compute sound pressure response at one meter
distance using equation 4.25.
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5.2.5 Sound Pressure Level at One Meter
Figure 5.13 shows the sound pressure level of the "Paraflex" system at one meter distance, com-
puted with equation 4.25 and 4.26.
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Figure 5.13: Sound Pressure Level at One Meter

Again, distinct peaks are visible at the resonant frequencies found in chapter 5.2.1. Compared
to the frequency response of the simulated transmission line system shown in figure 5.5, the
working bandwidth of the "Paraflex" system is increased as two distinct resonators tuned to
different resonant frequencies are providing sound pressure output, covering a wider range from
the fundamental resonance of the LTR at 29.5 Hz up to its third resonance at 148 Hz. For a
transmission line loudspeaker system, the working range is limited to frequencies between the
first and second line resonance, as there is a big dip in frequency response after the second
resonant frequency, as can be seen in figure 5.5. Crucially for the "Paraflex" loudspeaker system
shown in figure 5.7, fundamental resonance of the HTR at 95 Hz sits at about the second
resonant frequency of the LTR at 88 Hz, providing sound pressure output for the overall system
in this range as can be seen in figure 5.10, therefore increasing overall bandwidth of the system
due to good phase alignment of the resonators in this region.
Overall, the frequency response of the simulated "Paraflex" loudspeaker system has major sound
pressure level differences of more than 10 dBSPL in its working range, which does not make it
suitable for real life usage. However, the particular setup of figure 5.7 is not representative of
existing "Paraflex" loudspeaker cabinets, as it is only a simplified configuration for demonstration
purposes on how this kind of loudspeaker works. Different length for the HTR and LTR, changes
in cross sectional area as well as different driver parameters all influence the final response and
efficiency of the respective cabinet, therefore the development of a working design is a complex
process which exceeds the limits of this work. Also, digital signal processing will be necessary
to flat out the overall frequency response, as is the case for most "Public Address" loudspeaker
cabinets.
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Conclusion and Future Work

6.1 Conclusion
In this work, a computational model to simulate system characteristics such as sound pressure
level output, phase response or electric input impedance of a "Paraflex" loudspeaker enclosure
was derived. The model is based on electric circuit analysis of the electric analogous circuit,
containing only lumped elements describing the respective loudspeaker system. As "Paraflex"
loudspeaker enclosures are based on the concept of acoustic quarter wave resonators, computa-
tions for the distributed elements of acoustic transmission lines describing such resonators had to
be derived to be able to obtain acoustic input impedances to the lines faced by the loudspeaker
membrane, as was done in chapter 3. With acoustic input impedances at hand, it was possi-
ble to transform the electromechanoacoustic analogous circuit of the system containing lumped
elements only to the electric domain. Consequently, electric circuit analysis was performed to
obtain crucial system characteristics such as electric input impedance or input volume velocities
to the resonators as done in chapter 4.3.1 and 4.3.2. Eventually, it was possible to compute
system output sound pressure by again making use of equations derived in chapter 3.2.3.
As the concept of "Paraflex" loudspeaker systems is based on acoustic transmission lines, to get
a better understanding of how these enhance sound pressure output at low frequencies, a simple
transmission line loudspeaker enclosure was simulated to analyse behavior of the quarter wave
resonator over the frequency band of interest. With the graphs obtained, the necessary condi-
tion for frequencies to resonate in the lines given by equation 5.3 as well as relations between
acoustic impedance faced by the membrane and mechanic impedance of the loudspeaker driver
to form the total electric input impedance were found.
Subsequently, the more complex configuration of a "Paraflex" loudspeaker system was simulated
and analysed. It was found that the behavior of this type of loudspeaker cabinet strongly cor-
relates to the acoustic transmission line system analysed, albeit with more complex relations
between sound pressure generated by the front and back side of the loudspeaker membrane.
Eventually, comparison of the output sound pressure responses of both systems suggested wider
bandwitdh for "Paraflex" loudspeaker cabinets, as two distinct resonators provide sound pressure
output for different frequency ranges. Also, the transmission line segment shared by the HTR
an LTR was found to be increasing total length for the LTR as mentioned in chapter 1, therefore
lowering fundamental tuning. However, measurements will be necessary to further confirm this
relation as the derived model assumes this to be true.
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6.2 Future Work
As this work focused on deriving the computational model for "Paraflex" loudspeaker enclosures
as well as analysing the behavior of the quarter wave resonators such a system is based on,
relations between geometric dimensions of the enclosure such as cross sectional area or length
of the resonators and the resulting system characteristics are yet to be examined. Also, effects
of different driver parameters on system behavior and optimization of the enclosure regarding
efficiency or low end response are yet to be discussed.

Furthermore, several assumptions were made for the discussed model to simplify relations derived
describing the overall system. As every simplification adds potential errors in the simulation
results compared to real life behavior, the following could be included in the future.

Acoustic Simplifications
For computations derived describing the acoustic transmission lines, neither bends in the line
nor different shapes such as rectangular or triangular were discussed. As these most probably
change wave propagation in the lines for certain frequency ranges, different shapes and bends
should be taken into account to improve accuracy of the model.

Also, wave propagation in the transmission lines was assumed to be lossless for this work.
Dissipation at the boundaries of the line or for acoustic waves propagating in air could therefore
be discussed as well.

Finally, the system output was assumed to sit in an infinite baffle. For real world applications
though, this hardly is the case so improved models for radiation impedance in more complex
environments as well as consideration of diffraction on the baffle could be taken into account.

However, verification of the derived model by measuring acoustic characteristics of a real life
"Paraflex" loudspeaker cabinet and comparing it to simulation results should be the main focus
for future work on this topic. Also, the relation between geometry of the merge section and
the resulting resonant frequencies for the HTR and LTR are of major interest as this enables
designers to predict tuning of the resonators dependent on the geometric dimensions of the
merge section more accurately. This will eventually lead to better understanding of the most
important design parameters for "Paraflex" loudspeaker systems, making it a more convenient
type of enclosure for designers to work with.

– 31 –


	1 Introduction
	2 Loudspeaker Model
	2.1 Deriving the Electric Analogous Circuit
	2.1.1 Mechanoacoustic Conversion
	2.1.2 Electromechanic Conversion


	3 Acoustic Transmission Line Theory
	3.1 The Acoustic Transmission Line
	3.2 Electroacoustic Solution
	3.2.1 Reflection Coefficient
	3.2.2 Acoustic Impedance
	3.2.3 Acoustic Pressure

	3.3 Transmission Line with Changing Cross Sectional Area

	4 Paraflex Loudspeaker Analysis
	4.1 Paraflex System Setup
	4.2 HTR and LTR Impedances
	4.3 Electric Analogous Circuit Analysis
	4.3.1 Electric Input Impedance
	4.3.2 Acoustic Input Volume Velocity and Sound Pressure

	4.4 Output Sound Pressure
	4.5 Output Sound Pressure at One Meter

	5 Simulation Results
	5.1 Simulation of a Transmission Line System
	5.1.1 Acoustic Input Impedance
	5.1.2 Electric Input Impedance
	5.1.3 Input and Output Sound Pressure
	5.1.4 Sound Pressure Level at One Meter
	5.1.5 Sound Pressure Modes

	5.2 Simulation of a Paraflex System
	5.2.1 Acoustic Input Impedance
	5.2.2 Electric Input Impedance
	5.2.3 Sound Pressure at xJ
	5.2.4 Output Sound Pressure
	5.2.5 Sound Pressure Level at One Meter


	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work


