Technische Universität Graz

Implementation einer Hallraum-Klassifizierungsmessung mit Multisinus

Bachelorarbeit im Rahmen des Elektro- und Raumakustik Seminars

verfasst von

Lohrmann Simon

Betreuer: Dipl.-Ing. Dr.techn. Werner Weselak

Graz, Mai 2017

ZUSAMMENFASSUNG

In dieser Bachelorarbeit geht es im Rahmen des Elektro- und Raumakustik Seminars um die Implementation einer Hallraum-Klassifizierungsmessung mit einem Multisinus-Signal. Die Messung soll mit dem Messsystem PAK-Mobile MKII der Firma Müller BBM durchgeführt werden. Ziel ist es, die gesamte Klassifizierungsmessung in der PAK-Software durchzuführen, ohne dabei auf externe Programme zuzugreifen. Außerdem soll die Dauer der Messung durch ein geeignetes Multisinus-Signal deutlich verkürzt werden.

Das Multisinus-Signal wird mit Matlab generiert. Die fertig implementierte Klassifizierungsmessung wird vorerst im Tonstudio getestet. Anschließend wird eine weitere Messung in einem Hallraum durchgeführt.

Die Messung soll im Rahmen der Norm EN ISO 3741 Anhang D [1] stattfinden.

INHALTSVERZEICHNIS

1	Ν	lori	manforderung1
1.1	L	Prü	fvorschriften nach EN ISO 3741 Anhang D1
1.2	2	Sta	ndardabweichung pro Terzband2
2	N	∕lul	tisinus
2 1		Mu	Itisinus ohne Phasenverschiebung 3
2.1	,	Mu	Itisinus onne Phasenverschiebung
2.4	2	Gri	innierter Multicinus
2.3	•	Git	
3	Ir	mp	lementation in der PAK-Software9
3.1	L	Gru	Indsätzliche Einstellungen9
	3.1	.1	Messdefinition9
	3.1	.2	Messeinstellung und Grafikdefinition 10
3.2	2	Imp	plementation des Programms18
	3.2	.1	Formel für die Istkurve des gruppierten Multisinus18
	3.2	.2	Formel für die Istkurve des 30 sekündigen Multisinus 20
4	D	uro	chführung der Klassifizierungsmessung 21
4.1	L	Ver	wendetes Equipment 21
	4.1	.1	Inventarliste
	4.1	.2	Lautsprecher
4.2	2	Aut	fbau der Messung 23
	4.2	.1	SPSC-Tonstudio
4.3	3	Du	rchführung der Messung 27
	4.3	.1	SPSC-Tonstudio
4.4	l	Me	ssergebnisse
	4.4	.1	SPSC-Tonstudio
	4.4	.2	Hallraum
5	Α	nh	ang 38
5.1	L	Orc	Inerverzeichnis

LITERATURVERZEICHNIS

- Acoustics Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods for reverberation test rooms (ISO 3741:2010)
- [2] Untersuchung des Einflusses der Mikrophonpositionen in einem Hallraum, Jakob Spötl, Masterarbeit TUG, 2014
- [3] Akustische Messtechnik Labor Skript TUG, Balint J. und Weselak W.
- [4] Norsonic Datenblatt Schallquellen, Norsonic, NoiseExcit Ed5Rev2 Eng 0510
- [5] M. R. Schröder Bell Telephone Labs., Inc. Murray Hill, N. J. 09747, Synthesis of Low-Peak-Factor Signals and Binary Sequences With Low Autocorrelation, 1969
- [6] Weselak W., Akustische Messtechnik Skript, v.9.0, TU Graz, 2014/15

1 Normanforderung

Die Hallraum-Klassifizierungsmessung soll gemäß den Prüfvorschriften der Norm EN ISO 3741 Anhang D implementiert werden.

1.1 Prüfvorschriften nach EN ISO 3741 Anhang D

Der Frequenzbereich, der laut EN ISO 3741 Anhang D überprüft werden soll, ist in der "Prüffrequenzen-Tabelle" (Abb. 2) angegeben.

Es müssen mindestens sechs Mikrofone verwendet werden. Bei Bedarf kann die Anzahl erhöht werden. Bei Erhöhung der Mikrofonanzahl verbessern sich die Messergebnisse.

Die Messmikrofone sind im Abstand von mindestens der Hälfte der Wellenlänge der niedrigsten Frequenz zueinander zu platzieren. Es muss bei jedem Mikrofon ein Mindestabstand von 1m zu angrenzenden Flächen eingehalten werden. Der Mindestabstand der Mikrofone zum Lautsprecher ist durch die folgende Formel gegeben:

$$d_{min} = 0.08 * \sqrt{\frac{V}{T_{60}}}$$

Dabei ist V das Volumen und T_{60} die minimale Nachhallzeit innerhalb des zu prüfenden Frequenzbereichs des zu prüfenden Raumes.

Der Lautsprecher ist an der Stelle zu platzieren, an der sich normalerweise die Schallquelle im Raum befindet. Dabei ist darauf zu achten, dass er so ausgerichtet wird, dass das Lautsprecherchassis möglichst von allen nächstgelegenen Flächen wegstrahlt.

1.2 Standardabweichung pro Terzband

Schlussendlich soll aus den gemessenen Schalldrücken die frequenzmäßige Standardabweichung pro Terzband berechnet werden. Diese Standardabweichung gibt die Varianz der Schalldrücke der zu prüfenden Frequenzen innerhalb eines Terzbandes an. Diese darf die nach der Norm vorgegebenen Grenzwerte nicht überschreiten (Abb. 1).

Mittenfrequenz des Terzbandes [Hz]	Maximal zulässige Standardabweichung [dB]
100 bis 160	3,0
200 bis 315	2,0
400 bis 630	1,5
800 bis 2500	1,0

Abb. 1: maximal zulässige Standardabweichung nach Norm [1]

Bei der Berechnung der Standardabweichung werden die Schalldrücke der sechs Mikrofone bei jeder einzelnen Prüffrequenz gemittelt. Dadurch erhält man den mittleren Schalldruckpegel bei jeder einzelnen Prüffrequenz. Anschließend werden diese Schalldruckwerte über ganze Terzbänder gemittelt. Mit Hilfe des gemittelten Schalldruckpegels über die einzelnen Prüffrequenzen L_{pf,i} und dem über ein ganzes Terzband gemittelten Schalldruckpegel L_{pf}, errechnet sich die Standardabweichung eines Terzbandes wie folgt:

$$s_f = \sqrt{\sum_{i=1}^{N_f} \frac{(L_{pf,i} - L_{pf})^2}{N_f - 1}}$$

Dabei ist $N_{\rm f}$ die Anzahl der Prüftöne innerhalb des Terzbandes f.

2 Multisinus

Bei der Implementierung der Messung mit einem Multisinus-Signal geht es grundsätzlich darum, die Dauer des Messprozesses zu verkürzen. Die bisherige Hallraum-Klassifizierungsmessung wurde in einer Masterarbeit implementiert. Bei dieser Messung wird jede nach der Norm [1] relevante Prüffrequenz (Abb. 2) einzeln nacheinander durchgegangen und dauert deshalb 2:20 Stunden. Die Idee des Multisinus-Signals ist es, die relevanten Prüffrequenzen nicht mehr einzeln nacheinander zu prüfen, sondern mehrere Frequenzen zu einem Multisinus-Signal zusammenzufassen, sodass diese gleichzeitig geprüft werden können. Dabei ist zu überlegen, wie die insgesamt 365 Prüffrequenzen am geschicktesten zusammenzufassen sind damit der Multisinus einen ausreichend hohen Energiegehalt besitzt.

Im Folgenden werden einige Ideen zu dieser Fragestellung erläutert. Des Weiteren werden die Probleme und Lösungen, die sich aus den verschiedenen Ansätzen ergaben, aufgezeigt.

2.1 Multisinus ohne Phasenverschiebung

Zu Beginn lag die Idee nahe, die in der Tabelle (Abb. 2) abgebildeten Prüffrequenzen in ein einziges Multisinus-Signal zu packen. Dadurch würde sich theoretisch die Messdauer auf 30 Sekunden verkürzen.

Das Problem das sich allerdings bei diesem Signal ergab, war der sehr niedrige Energiegehalt. In Abb. 3 ist ein Zeitausschnitt dieses Signals dargestellt. Hier kann man sehr deutlich den hohen Crest-Faktor und den sehr niedrigen Effektivwert erkennen. Außerdem beinhaltet dieser Multisinus sehr steile Flanken, die akustisch als "Knacken" wahrnehmbar sind. Die Flanken jeder einzelnen Prüffrequenz überlagern sich an bestimmten Stellen, wie z.B. zu Beginn des Signals, und addieren sich zu einer extrem steilen Flanke. Steile Flanken sind ungeeignet für den Lautsprecher. Auffallend dabei war, dass das "Knackgeräusch" periodisch wiederkehrte.

					Cen	tre fre	quency	of one	-third-	octave	bands				
	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500
	-	-	147	_		-	361	-	-	-	-	-	1 470	-	-
	-	113	148	-	226		364	-	-	-	-	1 130	1 480		2 260
	-	114	149	-	228		367	-	564	712	-	1 140	1 490	-	2 280
	90	115	150	180	230	285	370	450	570	720	900	1 150	1 500	1 800	2 300
	91	116	151	182	232	288	373	455	576	728	910	1 160	1 510	1 820	2 320
	92	117	152	184	234	291	376	460	582	736	920	1 170	1 520	1 840	2 340
	93	118	153	186	236	294	379	465	588	744	930	1 180	1 530	1 860	2 360
	94	119	154	188	238	297	382	470	594	752	940	1 190	1 540	1 880	2 380
	95	120	155	190	240	300	385	475	600	760	950	1 200	1 550	1 900	2 400
	96	121	156	192	242	303	388	480	606	768	960	1 210	1 560	1 920	2 420
	97	122	157	194	244	306	391	485	612	776	970	1 220	1 570	1 940	2 4 4 0
	98	123	158	196	246	309	394	490	618	784	980	1 230	1 580	1 960	2 460
	99	124	159	198	248	312	397	495	624	792	990	1 240	1 590	1 980	2 480
	100	125	160	200	250	315	400	500	630	800	1 000	1 250	1 600	2 000	2 500
	101	126	161	202	252	318	403	505	636	808	1 010	1 260	1 610	2 0 2 0	2 520
	102	127	162	204	254	321	406	510	642	816	1 020	1 270	1 620	2 040	2 540
	103	128	163	206	256	324	409	515	648	824	1 030	1 280	1 630	2 060	2 560
	104	129	164	208	258	327	412	520	654	832	1 040	1 290	1 640	2 080	2 580
	105	130	165	210	260	330	415	525	660	840	1 050	1 300	1 650	2 100	2 600
	106	131	166	212	262	333	418	530	666	848	1 060	1 310	1 660	2 120	2 620
	107	132	167	214	264	336	421	535	672	856	1 070	1 320	1 670	2 140	2 640
	108	133	168	216	266	339	424	540	678	864	1 080	1 330	1 680	2 160	2 660
	109	134	169	218	268	342	427	545	684	872	1 090	1 340	1 690	2 180	2 680
	110	135	170	220	270	345	430	550	690	880	1 100	1 350	1 700	2 200	2 700
	111	136	171	222	272	348	433	555	696	888	1 110	1 360	1 710	2 220	2 720
	-	137	172	-	274	-	436	560	702	-	-	1 370	1 720	-	2 740
	-	138	173	3 — 0	276	-	439	-		-	-	1 380	1 730	-	2 760
Increment, Hz	1	1	1	2	2	3	3	5	6	8	10	10	10	20	20
Tolerance of increment, Hz	±0,3	±0,3	±0,3	±0,5	±0,5	±1	±1	±1,5	±2	±3	±3	±5	±5	±5	±5
Number of test frequen- cies, N _f	22	26	27	22	26	22	27	23	24	23	22	26	27	22	26

Abb. 2: Prüffrequenzen nach Norm [1]

Abb. 3: Zeitsignal des Multisinus mit allen Prüffrequenzen (Signalanfang gezoomt)

2.2 Multisinus mit Phasenverschiebung

Die nächste Überlegung war, durch geeignete Phasenverschiebung der einzelnen Prüffrequenzen ein Multlisinus-Signal zu generieren, das einen höheren Effektivwert und somit Energiegehalt besitzt. Es wurde auch erhofft, dass sich die steilen Flanken im Signal eliminieren. Der erste Ansatz dazu war die Schröder-Gleichung [5]:

$$\varphi_k = \varphi_1 - \frac{(\pi * k^2)}{N}$$

Diese Gleichung berechnet die Phasenverschiebung jeder k-ten der insgesamt N Frequenzen. Das Signal sollte schlussendlich einen optimalen Energiegehalt aufweisen. Die Gleichung gilt allerdings nur für Multisinus-Signale mit harmonischen Teiltönen und hat in diesem Fall daher nur zu einer kleinen Verbesserung des Energiegehalts geführt (Abb. 4).

Abb. 4: Zeitsignal des Multisinus mit Schröder-Phase (Signalanfang gezoomt)

Daraufhin wurden verschiedene Phasenverschiebungen ausprobiert und es konnte schlussendlich ein Signal mit einem deutlich verbesserten Energiegehalt generiert werden (Abb. 5). Dafür wurde folgende Formel verwendet:

$$\varphi_k = \varphi_1 - \frac{\left(\pi * \left(\frac{k^2}{c}\right)^2\right)}{N}$$

Abb. 5: Multisinus mit Phasenverschiebung (Signalanfang gezoomt)

Eine Frage die sich nun stellte ist, ob es einen Algorithmus gibt, mit dem sich aus einer beliebigen Anzahl an Sinustönen, die gleichzeitig miteinander abgespielt werden, die Phasenverschiebung der einzelnen Frequenzen so ausrechnen lässt, dass man ein Multisinus-Signal mit höchstmöglichem Energiegehalt erhält. Diese Frage konnte bisher noch nicht beantwortet werden.

2.3 Gruppierter Multisinus

Da sich herausgestellt hat, dass die oben beschriebenen Messsignale einen sehr geringen Effektivwert aufweisen, war die nächste Idee, die Tabelle (Abb. 2) Zeile für Zeile auszulesen. Dabei werden alle Frequenzen einer Zeile in ein Multisinus-Signal zusammengefasst. Jede Zeile wird 30s lang ausgegeben. Zwischen den einzelnen Zeilen ist eine Pause von 10s eingefügt (Abb. 6), sodass die maximale Abklingzeit im Hallraum eingehalten wird und die Messung der folgenden Zeile nicht durch die vorhergehende Messung beeinflusst wird.

Dadurch, dass das zeilenweise Abarbeiten der "Prüffrequenzen-Tabelle" maximal 15 Frequenzen gleichzeitig in den Raum spielt und diese Frequenzen auch mindestens 25 Hz auseinanderliegen, erhält man bei dieser Art der Implementation einen deutlich höheren Energiegehalt im Signal. Die unterschiedlichen Amplitudenwerte ergeben sich aus der unterschiedlichen Anzahl an Prüffrequenzen, die gleichzeitig wiedergegeben werden und der Gewichtung der einzelnen Frequenzen, um den charakteristischen Lautsprecherfrequenzgang (Abb. 26) auszugleichen.

Das Signal ist allerdings mit 18 min deutlich länger als die Multisinus-Signale, die alle Prüffrequenzen gleichzeitig abspielen.

Abb. 6: Gruppierter Multisinus (Signalanfang gezoomt)

Abb. 7: Gruppierter Multisinus (Ausschnitt aus der ersten Zeile)

Abb. 8: Gruppierter Multisinus (Ausschnitt aus der zweiten Zeile)

Abb. 9: Gruppierter Multisinus (Ausschnitt aus der dritten Zeile)

3 Implementation in der PAK-Software

3.1 Grundsätzliche Einstellungen

Die Messung ist unter dem Projekt "ISO3741_AnhD_Hallraum_Klassifzierung" gespeichert.

3.1.1 Messdefinition

	en werkzeuge Extras	f:			
] 🦾 🖌 Spei	chern und Schließen 🛛 🔄				
Allgemeine Dater	1				
Fhema .	Hallraum-Klassifizierung nach E	N ISO 3741 Anhang D			
	18 min				
rüfstand		Messreihennr.			
Bachbearbeiter		Abteilung		•	
Auftraggeber		Abteilung Ag.		•	
eschreihungen					
AKFanrzeug		····			
lessung					
ktuelles Projekt	ISO3741_AnhD_Hallraum_Klas	ssifizierung	Messeinstellung	hD_Hallraum_Klassifizierung_18min	
/ersuchsname	HR_mitVPR		Grafikdefinition	hD_Hallraum_Klassifizierung_18min	
2012/01/02/2017	Spötl-LS_Multisinus_Q1		Seite	Zeitrohdaten 🔹	
Intertitel					

Abb. 10: Messdefinition (Gruppierter Multisinus)

In Abb. 10 ist die Messdefinition für die Klassifizierungsmessung mit dem gruppierten Multisinussignal dargestellt. In diesem Fenster werden alle für das Projekt notwendigen Daten geladen. Unter anderem sind hier verschiedene Informationen über das Projekt sowie die Messeinstellungen und Grafikdefinitionen abrufbar.

3.1.2 Messeinstellung und Grafikdefinition

ter Bearbeiter	1 Werkzeuge Extras ?		
) 🧉 🛃 Speiche	ern und Schließen 🛛 🔒 🛍	× .	
lobale Einstellunge Definition der Abta 7 1 : Luftsch	an Istgruppen hall Kanäle 1,.	1: Luftschall Messgerät MKII Hardware Kanalkonfiguration Kanaleinstellungen Messpositionen Kalibrierun Abtastrate [Hz] 8192 FFT Ntel-Oktaven Zeitblock APS Terzen	·g
nalyse [eitrohdaten [orlaufzeit [s]] MKII Local Stora Führungsparamete Führung Dauer [s] Schrittweite [s] friggerung friggerkanal	Online Speichern Keine Gauge Aktiv Fr Zeit/Starttrigger 1079 2 Signal-Flanke 12 ; Dir ; El. Spannung Friende	Image: FFT 6tel-Oktaven CPS 12tel-Oktaven PRS 24stel-Oktaven FFT-Param Oktav-Param Detektor Detektor Detektor-Param Detektor-Param	
Friggerschwelle [V] 0.2		

Abb. 11: Messeinstellung (Gruppierter Multisinus)

In Abb. 11 ist die Messeinstellung für die Messung mit gruppierten Multisinus angegeben. Hier sind grundsätzliche Einstellungen für die Messung vorzunehmen. Als Führungsparameter wird die Zeit verwendet. Das Triggersignal ist eine steigende Signalflanke des Signals am Kanal 12 vom PAK-Mobile MKII. An diesem Kanal liegt das Ausgangssignal (Multisinus) der Soundkarte. Das bedeutet, dass die Messung startet, sobald die Play-Taste des Audio-Wiedergabegeräts betätigt wird. Außer der Dauer, die für den 30s-Multisinus auf 20s gestellt ist, ist die Messeinstellung für den gruppierten Multisinus identisch mit der Messeinstellung für den 30s-Multisinus.

Analyse-Parameter	Trigg	er-Einstellungen				
Max. Frequenz [Hz] 32	200					
Blockparameter						
Anzahl Frequenzlinien	128	01				
Blockgröße	327	32768				
Frequenzauflösung [Hz	2] 0.25	5	•			
Blockdauer [s]	4	4				
Fensterung		Hanning	•			
Mittelungsart		Linear 🔻				
Überlappung [%]		50 🔻				
Mittelungszahl		Variabel 🔻				
änge des gesamten Bl	ocks [s]]				
Kreuz-Ref.kanal		-	•			

Abb. 12: FFT-Parameter (Gruppierter Multisinus & 30 sekündiger Multisinus)

Als Abtastrate wird 8192 Hz verwendet. Dieser Wert ist mindestens doppelt so hoch wie die höchste zu prüfende Frequenz (2760 Hz). Die Auflösung der FFT-Analyse ist 0,25 Hz. Für das Projekt mit dem 30-sekündigen Multisinus wurden die selben FFT-Einstellungen gewählt. Da hier der kleinste Abstand zwischen den zu prüfenden Frequenzen 1 Hz beträgt, ist diese Frequenzauflösung ausreichend. Als Fensterung wird ein Hanning-Fenster verwendet. Dadurch werden Leck-Effekte, die bei der Fensterung entstehen können, reduziert.

Die Grafikdefinition besitzt insgesamt sechs Reiter:

In dem in Abb. 13 dargestellten Reiter ist die Grafikdefinition der Zeitrohdaten der sechs Mikrofone sowie des Ausgangssignals der Soundkarte angegeben.

	Grafik-Defin	tion - ISO3741_	AnhD_Hallraum_Klassifizierung_18min (Ze	eitrohdaten)				 _ 🗆 X
Da	tei Bearbe	iten Werkzeug	e Extras ?					
	🗳 🔒 Sp	eichern und Schliel	en 🔒 ڬ i Vorlage Fest	 Name ISO3741_AnhD_Rohdaten 	n.vas_fly 🧭 📖 Modus Standard	▼ Zusatztext	`	
	Aktiv Dia	gr. Kurve Linien	yp Messungsname		Datendefinition (Info)			*
1	J	1 1	Aktuelle Messdaten				Zeitrohdaten Kan. 1 [Mic1] S (2D)	11
2	1	2 1	Aktuelle Messdaten				Zeitrohdaten Kan. 2 [Mic2] S (2D)	
3	1	3 1	Aktuelle Messdaten				Zeitrohdaten Kan. 3 [Mic3] S (2D)	
4	1	4 1	Aktuelle Messdaten				Zeitrohdaten Kan. 4 [Mic4] S (2D)	
5	1	5 1	Aktuelle Messdaten				Zeitrohdaten Kan. 5 [Mic5] S (2D)	
6	1	6 1	Aktuelle Messdaten				Zeitrohdaten Kan. 6 [Mic6] S (2D)	
7 8 9	1	7 1	Aktuelle Messdaten				Zeitrohdaten Kan. 12 [Dir] S (2D)	
10 11 12								
13								
Ľ	Ze	itrohdaten	FFT online	/ FFT (Zeile 1-9)	/ FFT (Zeile 10-18)	/ FFT (Zeile 19-27)	/Auswertung	18
Gri	fikausgabe						• •	

Abb. 13: Grafikdefinition der Zeitrohdaten (Gruppierter Multisinus)

Der Reiter "FFT online" (Abb. 14) stellt das Frequenzspektrum aus den Zeitrohdaten der sechs Mikrofone und des Direktsignals dar.

Grafik-Definition - ISO3741_AnhD_Hallraum_Klassifizierung_18min (FFT online)	_ _ X
Datel Bearbeiten Werkzeuge Extras ?	
🗋 🧉 🚽 Speichern und Schließen 🚽 🔌 🙇 i Vorlage Fest 🔹 Name ISO3741_AnhD_FFT.vas_fly	💕 Modus Standard 🔹 Zusatztext 🧭
Aktiv Diagr. Kurve Linientyp Messungsname	Datendefinition (Info)
1 1 Aktuelle Messdaten	FFT mag Kan. 1 [Mic1] S (2D)
2 2 1 Aktuelle Messdaten	FFT mag Kan. 2 [Mrc2] S (2D)
3 3 1 Aktuelle Messdaten	FFT mag Kan. 3 [Mic3] S (20)
4 4 1 Aktuelle Messdaten	FFT mag Kan. 4 [Mic4] S (2D)
5 5 1 Aktuelle Messdaten	FFT mag Kan. 5 [Mic5] S (20)
6 📝 6 1 Aktuelle Messdaten	FFT mag Kan. 6 [Mic6] S (20)
7	
8 📝 7 1 Aktuelle Messdaten	FFT mag Kan. 12 [Dir] S (20)
9	
10	
11	
12	
13	· · · · · · · · · · · · · · · · · · ·
•	and the second
Zeitrohdaten / FFT online / FFT (Zeile 1-9) /	FFT (Zeile 10-18) / FFT (Zeile 19-27) / Auswertung /
Grafikausgabe	

Abb. 14: Grafikdefinition der FFT-Analyse (Gruppierter Multisinus)

Der Reiter in Abb. 15 und die beiden darauf folgenden Reiter geben die Schalldrücke der einzelnen Frequenzen zeilenweise und gemittelt über alle Mikrofonpositionen aus.

Grafik-Definition - ISO3741_AnhD_Hallraum_Klassifizierung_18min (FFT (Zeile 1-9))	1.000	_ 🗆 X
Datei Bearbeiten Werkzeuge Extras ?		
🗋 🧉 🚽 Speichern und Schließen 🚽 🐴 🙇 i Vorlage Fest 🔹 Name 03741_AnhD_FFT(Zeile 1-9).vas_fi	fly 📸 Modus Standard 🔹 Zusetztext 🧭	
Aktiv Diagr. Kurve Linientyp Messungsname	Datendefinition (Info)	*
1 J 1 ARITHMETIK	FFTmag;[IS03741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdater(Zei	111
2 2 1 ARITHMETIK	FFTmag;[ISO3741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_JST_6mic_18min_FFT_Rohdaten(Zei	
3 📝 3 1 ARITHMETIK	FFTmag;[IS03741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdater(Zei	
4 4 1 ARITHMETIK	FFTmag;[ISO3741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdaten(Zei	
5 5 1 ARITHMETIK	FFTmag;[IS03741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdaten(Zei	
6 🗸 6 1 ARITHMETIK	FFTmag;[ISO3741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdaten(Zei	
7 7 7 1 ARITHMETIK	FFTmag;[IS03741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdaten(Zei	
8 🗸 8 1 ARITHMETIK	FFTmag;[IS03741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdater(Zei	
9 9 9 1 ARITHMETIK	FFTmag;[ISO3741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_FFT_Rohdaten(Zei	
10		
11		
12		
13		
		•
Zeitrohdaten / FFT online / FFT (Zeile 1-9)	FFT (Zeile 10-18) / FFT (Zeile 19-27) / Auswertung /	28
Grafikauscabe		ALCONT OF THE OWNER

Abb. 15: Grafikdefinition Zeile 1-9 (Gruppierter Multisinus)

In der zweiten Zeile des letzten Reiters (Abb. 16) wird die Standardabweichung berechnet und ausgegeben. Die erste Zeile gibt die Grenze der maximal zulässigen Standardabweichung (Abb. 1) als Grafik aus. Die dritte Zeile ist dazu da, eine zusätzliche Kurve in dem Diagramm auszugeben.

Grafik-Definition - ISO3741_AnhD_Hallraum_Klassifizierung_18min (Auswertung)	_ C X
Datei Bearbeiten Werkzeuge Extras ?	
🗋 🧭 🖬 Speichern und Schließen 📓 🐚 🖏 🧯 Vorlage Fest 🔹 Name hD_Hallraum_Klassifizierung.vas_fly	🎯 Modus Standard 🔹 Zusatztext
Aktiv Diagr. Kurve Linientyp Messungsname	Datendefinition (Info)
1 1 ARITHMETIK	1/3-Oktave ; [Emty.pak_var / Hallraum_SOLL.pak_for]
2 1 2 ARITHMETIK	1/3-Oktave;[IS03741_AnhD_Hallraum_Klassifizierung_18min.pak_var/Hallraum_IST_6mic_18min_Multisinus.p
3 1 3 ARITHMETIK	<1/3-Oktave ; [ISO3741_AnhD_Hallraum_Klassifizierung_30s.pak_var / Hallraum_IST_6mic_30s.pak_for]>
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	· · · · · · · · · · · · · · · · · · ·
Zeitrohdaten / FFT online / FFT (Zeile 1-9)	FFT (Zelle 10-18) / FFT (Zelle 19-27) / Auswertung 28
Grafikausgabe	

Abb. 16: Grafikdefinition der Auswertung (Gruppierter Multisinus)

In der Datendefinition des letzten Reiters (Auswertung) sind die Variablen sowie die Formel definiert.

Variablen	Darstellung/Filter	Führungs-Param	ieter Skale	n-Definition	Gesamtpegel	
Definition der	Berechnung					
/ariablen Em	ty.pak_var		Formel	issifizierung/H	allraum_SOLL.pak	_for 💕
Freie Formelp	arameter					
Parameter %a	1	▼ F	Parameter %b			•
Parameter %c	:	▼ F	Parameter %d			•
Parameter %e	b.	▼ F	Parameter %f			•
Parameter %g		▼ F	Parameter %h			*
Platzhalter für	Messdaten					
Messungsnam	e			2		
Kopieren	Einträge kopiere	:n				

Abb. 17: Datendefinition der Sollkurve (Gruppierter und 30 sekündiger Multisinus)

Variablen Darstellung/F	Filter Führungs-Parameter Skalen-Definition Gesamtpegel	8
Definition der Berechnung		
Variablen raum_Klassifizien	rung_18min.pak_var 📴 Formel IST_6mic_18min_Multisinus.pak_for 📴	
	December 0/ b	
Parameter %a		
Parameter %c		
Parameter %e	Parameter 9/h	
Platzhalter für Messdaten		
vessungsname assifizierun	ng/HR mit/VPR/SpötI-LS Multisinus 01	
Kopieren Einträge	kopieren	

Abb. 18: Datendefinition der Istkurve (Gruppierter Multisinus)

/ariablen Darstellung/Fi	lter Führungs-Parameter Skalen-Definition Gesamtpegel	(
Definition der Berechnung		
ariablen allraum_Klassifizie	erung_30s.pak_var 😰 Formel Hallraum_IST_6mic_30s.pak_for 🛛	š]]
Freie Formelparameter		
arameter %a	▼ Parameter %b ▼	
arameter %c	▼ Parameter %d ▼	
arameter %e	▼ Parameter %f	
arameter <mark>%</mark> g	▼ Parameter %h ▼	
latzhalter für Messdaten		
lessungsname		
Konjoron Einträgo k	opiorop	

Abb. 19: Datendefinition der Istkurve (30 sekündiger Multisinus)

Bei der Messung mit dem 30s-Multisinus und dem gruppierten Multisinus werden als Eingangsvariablen die Werte der FFT-Analyse der sechs Mikrofone verwendet.

M Ar	ithmetikfen	ster -		Annual day links	
Date	i Bearbeit	ten Werkzeuge ?			
	🎽 閕 Spei	chern und Schließen 🛛 🔒 🛍			
Var	iablen: ISO37	41_AnhD_Hallraum_Klassifizierung_18min.pak_var F	ormel: Hallraum_IST_6mic_18mir	n_Multisinus.pak_for	
	Variable	Messungsname		Info	
1	mp1	ISO3741_AnhD_Hallraum_Klassifizierung/HR_mitVPR/S	pötl-LS_Multisinus_Q1	FFT komplex Kan. 1 [Mic1] S -	1
2	mp2	ISO3741_AnhD_Hallraum_Klassifizierung/HR_mitVPR/S	pötl-LS_Multisinus_Q1	FFT komplex Kan. 2 [Mic2] S -	
3	mp3	ISO3741_AnhD_Hallraum_Klassifizierung/HR_mitVPR/S	pötl-LS_Multisinus_Q1	FFT komplex Kan. 3 [Mic3] S -	
4	mp4	ISO3741_AnhD_Hallraum_Klassifizierung/HR_mitVPR/S	pötl-LS_Multisinus_Q1	FFT komplex Kan. 4 [Mic4] S -	
5	mp5	ISO3741_AnhD_Hallraum_Klassifizierung/HR_mitVPR/S	pötl-LS_Multisinus_Q1	FFT komplex Kan. 5 [Mic5] S -	
6	mp6	ISO3741_AnhD_Hallraum_Klassifizierung/HR_mitVPR/S	pötl-LS_Multisinus_Q1	FFT komplex Kan. 6 [Mic6] S -	
7					
8					
9					
10					
11					
12					
10					Ŧ

Abb. 20: Variablendefinition (Gruppierter Multisinus)

Ari	thmetikfens	ster -			
Date	Bearbeite	en Werkzeuge ?			
	🍟 🛃 Speic	thern und Schließen 🛛 🔒 🛍 🐍			
Vari	ablen: ISO374	41_AnhD_Hallraum_Klassifizierung_30s.pak_var	Formel: Hallraum_IST_6mic_30s.pak_for		
	Variable	Messungsname		Info	*
1	mp1	ISO3741_AnhD_Hallraum_Klassifizierung/HR_m	itVPR/Dodekaeder_Rauschen_Q1_Nachauswertun	FFT komplex Kan. 1 [Mic1] S -	
2	mp2	ISO3741_AnhD_Hallraum_Klassifizierung/HR_m	itVPR/Dodekaeder_Rauschen_Q1_Nachauswertun	FFT komplex Kan. 2 [Mic2] S -	12
3	mp3	ISO3741_AnhD_Hallraum_Klassifizierung/HR_m	itVPR/Dodekaeder_Rauschen_Q1_Nachauswertun	FFT komplex Kan. 3 [Mic3] S -	
4	mp4	ISO3741_AnhD_Hallraum_Klassifizierung/HR_m	itVPR/Dodekaeder_Rauschen_Q1_Nachauswertun	FFT komplex Kan. 4 [Mic4] S -	
5	mp5	ISO3741_AnhD_Hallraum_Klassifizierung/HR_m	itVPR/Dodekaeder_Rauschen_Q1_Nachauswertun	FFT komplex Kan. 5 [Mic5] S -	
6	mp6	ISO3741_AnhD_Hallraum_Klassifizierung/HR_m	itVPR/Dodekaeder_Rauschen_Q1_Nachauswertun	FFT komplex Kan. 6 [Mic6] S -	
7					
8					
9					
10					
11					
12					
10					

Abb. 21: Variablendefinition (30-sekündiger Multisinus)

Dandhaitan Mademuna 2	Conception of the second se	dan lake	
🥥 🛃 Speichern und Schließen 🛃 🧠 🕰	7		
ablen: Emty.pak_var Formel: Hallraum_SOLL.pak_for			
+		*	
AVER()	STD_DEV()	MR_AVER()	MR_STD_DEV()
	b:	c:	d:
	f:	g:	h:
ray = CREATE_ARRAY(100,3, 173,3, 180,; SULT = CREATE_2D(100,2500,8, 'Frequent	<pre>2, 348,2, 361,1.5, 702,1.5, 712,1, 25 z', 'Undefiniert', '1/3-Oktave', LIN,</pre>	00,1, CREATE_CURVE) array)	

Abb. 22: Formel der Sollkurve (Gruppierter und 30-sekündiger Multisinus)

Arithmetikfenster -				
atei Bearbeiten Werkzeuge ?		Second Color Selection		
🗋 📸 📕 Speichern und Schließen 📓 🖷 🖏				
Variablen: ISO3741 AnhD Hallraum Klassifizierung 18min.pak	var Formel: Hallraum_IST_6mic_18mir	Multisinus.pak_for		
				1
+	-		*	1
AVER()	STD_DEV()		MR_AVER()	MR_STD_DEV()
B:	b:	c:		d:
«)	ft	g:		h:
Formel Kommentar				
A subled and be been been been a	and the second second			
# Amplitude aus Komplexer FrT lesen und	zeitiiche Mittelung			-
p = 20*LOG10(((MAG(mp1)+MAG(mp2)+MAG(mp3)	3) +MAG (mp4) +MAG (mp5) +MAG (mp6))/6)/0.00002)		
f1 = GET_DATA VAL (AVER (SELECT_TRACK_RANG	SE(p, 130, 140)), Y VAL, AT V	AL, 90)		
f2 = GET_DATA_VAL (AVER (SELECT_TRACK_RANG	SE(p, 170, 180)), Y_VAL, AT_V	MAL, 91)		
f3 = GET_DATA_VAL (AVER (SELECT_TRACK_RANG	SE (p, 210, 220)), Y_VAL, AT_V	AL, 92)		
I4 = GET_DATA_VAL(AVER(SELECT_TRACK_RANG 45 = GEM_DAMA_VAL(AVER(SELECT_TRACK_RANG 45 = GEM_DAMA_VAL(AVER(SELECT_TRACK_RANG))	SE(p, 250, 260)), I VAL, AT V	AL, 93)		
f6 = GET DATA VAL (AVER (SELECT TRACK RAM	F(p, 330, 340)), Y VAL, AT W	AL, 95)		
f7 = GET DATA VAL (AVER (SELECT TRACK RANG	E(p, 370, 380)), Y VAL, AT V	AL, 96)		
f8 = GET DATA VAL (AVER (SELECT TRACK RANG	E(p, 410, 420)), Y VAL, AT V	AL, 97)		
f9 = GET_DATA_VAL (AVER (SELECT_TRACK_RANG	SE(p, 450, 460)), Y VAL, AT V	AL, 98)		
f10 = GET_DATA_VAL (AVER (SELECT_TRACK_RAM	NGE(p, 490, 500)), Y_VAL, AT_	VAL, 99)		
f11 = GET_DATA_VAL (AVER (SELECT_TRACK_RAM	<pre>GE(p, 530, 540)), Y_VAL, AT_</pre>	VAL, 100)		
f12 = GET_DATA_VAL (AVER (SELECT_TRACK_RAM	<pre>GE(p, 570, 580)), Y_VAL, AT_</pre>	VAL, 101)		
<pre>f13 = GET_DATA_VAL (AVER (SELECT_TRACK_RAM)</pre>	NGE (p, 610, 620)), Y_VAL, AT_	VAL, 102)		
f14 = GET_DATA_VAL (AVER (SELECT_TRACK_RAN	NGE(p, 650, 660)), Y_VAL, AT_	VAL, 103)		
<pre>f15 = GET_DATA_VAL (AVER (SELECT_TRACK_RAM)</pre>	WGE (p, 690, 700)), Y_VAL, AT_	VAL, 104)		
•				•
				Arithmotiv-Hilfo Cuntav priifon
				Arithmetik-Hilfe Syntax prüfen

Abb. 23: Formel der Istkurve (Gruppierter Multisinus)

ariablen: ISO3741_AnhD_Hallraum_Klassi	izierung_30s.pak_va	r Formel: Hallraum_IS	T_6mic_30s.pak_for			
+					1	1
AVER()		STD_DEV()		MR_AVER()	MR_STD	_DEV()
	b:		C:		 d:	
	f:		g:		 h:	
ormel Kommenter			20 - D.S.			
Amplitude aus komplexer E Im = AVER(MAG(mp1)) Zm = AVER(MAG(mp2)) Im = AVER(MAG(mp3)) Im = AVER(MAG(mp4))	FT lesen und :	zeitliche Mittelur	ng			
Amplitude aus komplexer E 1m = AVER(MAG(mp1)) 2m = AVER(MAG(mp2)) 3m = AVER(MAG(mp3)) 4m = AVER(MAG(mp3)) 5m = AVER(MAG(mp5)) 6m = AVER(MAG(mp5)) = 20*LOG10(((m1+m2m+m3m+	FT lesen und . n4m+m5m+m6m)//	zeitliche Mittelun 6)/0.00002)	ng			
Amplitude aus komplexer F Im = AVER(MAG(mp1)) 2m = AVER(MAG(mp2)) 3m = AVER(MAG(mp3)) 4m = AVER(MAG(mp5)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp1)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp2)) 5m = AVER(MAG(mp1)) 5m	FT lesen und n4m+m5m+m6m)// AL, AT_VAL, AL, AT_VAL,	zeitliche Mittelur 6)/0.00002) 90) 91)	ng			
Amplitude aus komplexer F Im = AVER (MAG (mp1)) 2m = AVER (MAG (mp2)) 3m = AVER (MAG (mp3)) 4m = AVER (MAG (mp5)) 5m = AVER (MAG (mp1)) 4m = AVER (MAG (mp1)) 5m = AVER (MAG (mp	FT lesen und n4m+m5m+m6m)// AL, AT_VAL, AL, AT_VAL, AL, AT_VAL,	zeitliche Mittelur 6)/0.00002) 90) 91) 92)	ng			
Amplitude aus komplexer E Im = AVER(MAG(mp1)) 2m = AVER(MAG(mp2)) 3m = AVER(MAG(mp3)) 4m = AVER(MAG(mp3)) 5m = AVER(MAG(mp5)) 5m = AVER(MAG(mp3)) 4m = GET_DATA_VAL(p, Y_V 5m = GET_DATA_VAL(p, Y_V 5m = GET_DATA_VAL(p, Y_V 5m = GET_DATA_VAL(p, Y_V) 5m = GET_DATA_V	FT lesen und n4m+mSm+m6m)// AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, LL, AT_VAL,	zeitliche Mittelur 6)/0.00002) 90) 91) 92) 93) 94)	ng			
Amplitude aus komplexer E Im = AVER (MAG (mp1)) 2m = AVER (MAG (mp2)) 3m = AVER (MAG (mp3)) 4m = AVER (MAG (mp3)) 4m = AVER (MAG (mp5)) 5m = AVER (MAG (mp1)) 5m = AVER (MAG (mp	FT lesen und n4m+m5m+m6m)// AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL,	<pre>zeitliche Mittelur 6)/0.00002) 90) 91) 92) 93) 94) 95)</pre>	ng			
Amplitude aus komplexer E Im = AVER (MAG (mp1)) 2m = AVER (MAG (mp2)) 3m = AVER (MAG (mp2)) 4m = AVER (MAG (mp3)) 4m = AVER (MAG (mp5)) 5m = AVER (MAG (mp1)) 5m = AVER (MAG (mp	FT lesen und n4m+m5m+m6m)// AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, AL, AT_VAL, L, AT_VAL,	<pre>zeitliche Mittelur 6)/0.00002) 90) 91) 92) 93) 94) 95) 96) 97)</pre>	ng			

Abb. 24: Formel der Istkurve (30-sekündiger Multisinus)

Die Formeln für die Berechnung der Istkurve werden im folgenden Abschnitt erklärt.

3.2 Implementation des Programms

Die bisherige Hallraum-Klassifizierungsmessung greift extern auf ein Matlab-Programm zu. Ein Ziel dieser Bachelorarbeit ist es nun gewesen, das gesamte Messprogramm in der PAK-Software zu implementieren, sodass nicht mehr extern auf Matlab zugegriffen wird.

Ein wesentlicher Unterschied zwischen der Programmierung in Matlab und der Programmierung in der PAK-Software ist, dass in der PAK-Software keine Schleifen zur Verfügung stehen.

Wichtig für das Verständnis des Algorithmus ist zu wissen, dass der gruppierte Multisinus alle Frequenzen jeder Zeile der "Prüffrequenzen-Tabelle" insgesamt 30s lang nacheinander ausgibt (Abb. 6). Zwischen den Zeilen ist immer eine Pause von 10s (Kap. 2.3).

3.2.1 Formel für die Istkurve des gruppierten Multisinus

Im Folgenden wird anhand einiger Formelausschnitte Schritt für Schritt der Algorithmus für die Istkurve des gruppierten Multisinus erklärt.

Zu Beginn gilt es, die Amplitudenwerte aus der komplexen FFT-Analyse zu lesen und zeitlich zu mitteln:

Amplitude aus komplexer FFT lesen und zeitliche Mittelung-----p=20*LOG10(((MAG(mp1)+MAG(mp2)+MAG(mp3)+MAG(mp4)+MAG(mp5)+MA G(mp6))/6)/0.00002) f1 = GET_DATA_VAL(AVER(SELECT_TRACK_RANGE(p, 130, 140)), Y_VAL, AT_VAL, 90) ...

Die Amplitudenwerte der Schalldrücke aller Messmikrofone, die mittels der Funktion "MAG()" herausgelesen werden, werden gemittelt, logarithmiert und als Variable "p" gespeichert. Mit den beiden ineinander verschachtelten Funktionen "AVER(SELECT_TRACK_RANGE(p, 130, 140))" wird der Schalldruckpegel p über einen bestimmten Zeitausschnitt selektiert (in diesem Fall von 130s bis 140s) und anschließend gemittelt. Danach wird ein Amplitudenwert ("Y_VAL") an einer bestimmten Stelle auf der x-Achse ("AT_VAL") ausgelesen. Dadurch erhält man in diesem Formelausschnitt beispielsweise den über alle sechs Messmikrofone gemittelten

. . .

Schalldruckpegel bei 90 Hz als Variable "f1" gespeichert. Diese Schritte werden nun für alle 365 Prüffrequenzen durchgeführt.

Danach wird der arithmetische Mittelwert über jedes Terzband gebildet:

arithmetischer Mittelwert eines Terzbandes ------Lpm1=(f1+f2+f3+f4+f5+f6+f7+f8+f9+f10+f11+f12+f13+f14+f15+f16+f17+f18+f19 +f20+f21+f22)/22

Aus den zuvor ermittelten Werten kann dann die Standardabweichung pro Terzband bestimmt werden. Der folgende Formelausschnitt zeigt die Implementation der Standardabweichung für das erste Terzband:

```
sf1=SQRT(((SQR(f1-Lpm1))+(SQR(f2-Lpm1))+(SQR(f3-Lpm1))+(SQR(f4-
Lpm1))+(SQR(f5-Lpm1))+(SQR(f6-Lpm1))+(SQR(f7-Lpm1))+(SQR(f8-
Lpm1))+(SQR(f9-Lpm1))+(SQR(f10-Lpm1))+(SQR(f11-Lpm1))+(SQR(f12-
Lpm1))+(SQR(f13-Lpm1))+(SQR(f14-Lpm1))+(SQR(f15-Lpm1))+(SQR(f16-
Lpm1))+(SQR(f17-Lpm1))+(SQR(f18-Lpm1))+(SQR(f19-Lpm1))+(SQR(f20-
Lpm1))+(SQR(f21-Lpm1))+(SQR(f22-Lpm1)))/21)
```

Schlussendlich werden die ermittelten Standardabweichungen den zugehörigen Terzband-Mittenfrequenzen zugeordnet und als 2D-Diagramm ausgegeben:

array = CREATE_ARRAY(100,sf1, 125,sf2, 160,sf3, 200,sf4, 250,sf5, 315,sf6, 400,sf7, 500,sf8, 630,sf9, 800,sf10, 1000,sf11, 1250,sf12, 1600,sf13, 2000,sf14, 2500,sf15, CREATE_CURVE) RESULT = CREATE_2D(100, 2500, 15, 'Frequenz', 'Undefiniert', '1/3-Oktave', LIN, array)

3.2.2 Formel für die Istkurve des 30 sekündigen Multisinus

Die Formel für den 30s-Multisinus unterscheidet sich nur in der zeitlichen Mittelung und im Auslesen der einzelnen Frequenzen zu Beginn der Formel. Hier wird über die ganze Signaldauer gemittelt und anschließend logarithmiert und danach dann mittels "GET_DATA_VAL()" die Schallpegel der einzelnen Prüffrequenzen herausgelesen.

```
# Amplitude aus komplexer FFT lesen und zeitliche Mittelung------

m1m = AVER(MAG(mp1))

...

p = 20*LOG10(((m1m+m2m+m3m+m4m+m5m+m6m)/6)/0.00002)

f1 = GET_DATA_VAL(p, Y_VAL, AT_VAL, 90)

...
```

4 Durchführung der Klassifizierungsmessung

Grundsätzlich wird bei dieser Hallraum-Klassifizierungsmessung ein Hallraum auf dessen Eignung zur Bestimmung der Schallleistung getestet. Falls der Hallraum durch die Klassifizierungsmessung als geeignet eingestuft wird, müssen die weiteren Messungen unter exakt denselben Bedingungen (Mikrofon-, Quellpositionen, etc.) stattfinden, die auch während der Klassifizierungsmessung gegeben waren.

4.1 Verwendetes Equipment

4.1.1 Inventarliste

Anzahl	Bezeichnung
1	Laptop Lenovo Thinkpad W520 mit Netzteil
1	PAK Mobile MKII mit Netzteil
1	Audiointerface RME Fireface 400
1	Lautsprecher [2]
1	Audiovorverstärker Parasound HCA-800II
1	Ethernet-Kabel
6	Messmikrofon mit Klemme (G.R.A.S. 46E)
6	Mikrofonstativ
1	Messgerät (Temperatur, Luftfeuchtigkeit)
1	Firewire-Kabel
1	Lautsprecher-Kabel
1	Schallpegelkalibrator Brüel & Kjaer Type 4231
6	BNC-Kabel
1	Cinch-Kabel
1	Adapter Cinch auf Klinke
1	Kabel BNC auf Cinch
1	Adapter Cinch auf BNC
1	Lautsprecher Norsonic Nor276 Dodekaeder
1	Audiovorverstärker Norsonic Nor280
1	Kabel XLR auf Klinke

Abb. 25: Inventarliste

Diese Inventarliste beinhaltet auch das Equipment, das bei der Vergleichsmessung mit dem Dodekaeder-Lautsprecher verwendet wurde.

4.1.2 Lautsprecher

Der Lautsprecher muss den Anforderungen der Norm [1] entsprechen. Er sollte einen ausreichend linearen Frequenzgang aufweisen. Verwendet wurde ein im Rahmen der Masterarbeit [2] konstruierter und geprüfter Lautsprecher. Eine Vergleichsmessung wurde mit einem Dodekaeder-Lautsprecher durchgeführt (Abb. 30). Um den charakteristischen Frequenzgang der beiden Lautsprecher (Abb. 26 und Abb. 27) auszugleichen, wurden diese invertiert. Mit den daraus erhaltenen Werten wurden die Prüffrequenzen der Multisinus-Signale bei der Implementation in Matlab entsprechend gewichtet.

Abb. 26: Lautsprecher-Frequenzgang [2]

Abb. 27: Lautsprecher-Frequenzgang (Dodekaeder) [4]

4.2 Aufbau der Messung

4.2.1 SPSC-Tonstudio

Kennwerte des Raumes:

- Raumvolumen: 128m³
- Raumhöhe: 2,8m
- Mittlere Nachhallzeit: 0,2s
- Temperatur: 22,6°C
- Luftfeuchtigkeit: 52,4%

Normanforderungen:

Mindestabstand der Mikrofone zueinander: 3,8m

Mindestabstand der Mikrofone zum Lautsprecher: 2m

Abb. 28: Grundriss des SPSC-Tonstudios (nicht maßstabsgetreu)

Abb. 29: Mikrofon- und Lautsprecherplatzierung im Tonstudio

Abb. 30: Mikrofon- und Lautsprecherplatzierung (Dodekaeder)

Abb. 31: Messaufbau im Nebenraum

Abb. 32: PAK-Mobile im Tonstudio

Aufgrund des kleinen Raumes konnte der Mindestabstand der Mikrofone zueinander nicht immer eingehalten werden. Der tatsächliche Mindestabstand betrug bei der Messung 2,4m.

Um die Messung nicht durch Störgeräusche der Geräte zu verfälschen, wurden Laptop, Lautsprecherverstärker sowie Audio-Interface in einem Nebenraum platziert (Abb. 31).

Abb. 33: Verkabelung des Equipments

Abb. 33 zeigt den Aufbau des Equipments. Die PAK-Software befindet sich auf dem Laptop. Dieser ist mit dem Audiointerface und dem PAK-Mobile MKII verbunden. Die sechs Messmikrofone sind an die Kanäle 1-6 des PAK-Mobile angeschlossen. Das Messsignal wird über das Audiointerface in den Lautsprecherverstärker und in den Kanal 12 des PAK Mobile eingespeist.

4.3 Durchführung der Messung

4.3.1 SPSC-Tonstudio

Vor der Durchführung der Messung wurde das Signal auf einen für die Messung ausreichend hohen Pegel gebracht. Der Verstärker wurde dafür auf 15 Uhr gedreht. Grundsätzlich ist zuerst die Software PAK 5.9 zu starten und das Projekt "ISO3741_AnhD_Hallraum_Klassifzierung" zu öffnen. Die Messmikrofone müssen vor der Messung kalibriert werden (Abb. 34), da bei der Berechnung der Standardabweichung mit absoluten Schalldruckpegeln gerechnet werden muss. Die Messergebnisse würden sonst verfälscht werden.

	Aktiv	Kanal	Ref. 1 [RMS]	Ref. 2	Einheit	Kalibrierfreq. [Hz]	Kalibrierfaktor	Kalibrieroffset	Status
L		1 [Mic1]	9	4	dB	1000	0.047493044 V/Pa	0 V	-
2		2 [Mic2]	9	4	dB	1000	0.049322456 V/Pa	0 V	-
3		3 [Mic3]	9	4	dB	1000	0.044987682 V/Pa	0 V	-
4		4 [Mic4]	9	4	dB	1000	0.054892063 V/Pa	0 V	-
5		5 [Mic5]	9	4	dB	1000	0.055732712 V/Pa	0 V	-
6		6 [Mic6]	g	4	dB	1000	0.041829255 V/Pa	0 V	-
7		12 [Dir]					1 V/V	0 V	-

Abb. 34: Kalibrierung der Messmikrofone

Nachdem das gesamte Messsystem aufgebaut und das Programm geladen wurde, kann die Hallraum-Klassifizierungsmessung durchgeführt werden, indem unter Messdefinition auf den Button "Start Messung" (Abb. 10) und anschließend auf "Start" geklickt wird. Nach dem Klicken auf den "Start"-Button wartet das Programm auf das Triggersignal. Da als Triggersignal eine steigende Flanke auf Kanal 12 des PAK-Mobile eingestellt wurde, kann nun durch Abspielen des Messsignals mit dem Mediaplayer die Messung gestartet werden. Während der Messung können die Grafikdefinitionen "Zeitrohdaten" oder "FFT online" (Kap. 3.1.2) eingesehen werden.

Abb. 35: Online-FFT-Analyse der Messmikrofone und des Quellsignals (30s-Multisinus)

Abb. 36: Momentaufnahme der Online-FFT-Analyse der Messmikrofone und des Quellsignals (1. Zeile des gruppierten Multisinus bei 10s)

Die Messung wurde mit den im zweiten Kapitel angeführten Multisinus-Signalen "Multisinus ohne Phasenverschiebung", "Multisinus mit Phasenverschiebung" (eigen gefundener Algorithmus für die Phasenverschiebung) und dem "gruppierten Multisinus" durchgeführt. Zusätzlich wurde eine Vergleichsmessung mit einem Dodekaeder-Lautsprecher durchgeführt. Bei der Vergleichsmessung wurde nur der gruppierte Multisinus als Prüfsignal verwendet.

4.4 Messergebnisse

4.4.1 SPSC-Tonstudio

Abb. 37: 30s-Multisinus mit Phase (rot) & ohne Phase (grün), Lautsprecher [2]

Abb. 38: Gruppierter Multisinus (rot) & 30s-Multisinus mit Phase (grün), Lautsprecher [2]

Abb. 39: Gruppierter Multisinus (rot) & 30s-Multisinus mit Phase (grün), Dodekaeder

Abb. 40: Gruppierter Multisinus Dodekaeder (rot) & Lautsprecher [2] (grün)

Die Ergebnisse der Messungen mit den verschiedenen 30s-Multisinussignalen zeigen, dass es kaum Unterschiede zwischen den Signalen mit und ohne Phasenverschiebungen gibt (Abb. 37). Auch zeigen die weiteren Ergebnisse, dass es keinen Unterschied macht, ob man den 30s-Multisinus oder den gruppierten Multisinus als Prüfsignal für die Messungen verwendet (Abb. 38 & Abb. 39).

4.4.2 Hallraum

Die folgenden Messungen wurden mit dem Lautsprecher [2] durchgeführt. Es werden jeweils für zwei unterschiedliche Quellpositionen (Q1 & Q2) die Ergebnisse mit und ohne Verbundplattenresonatoren in einem Hallraum miteinander verglichen (Abb. 41 & Abb. 42). Außerdem werden, auch für beide Quellpositionen und mit Verbundplattenresonatoren, die Ergebnisse der beiden Multisinussignale (30s & gruppiert) miteinander verglichen (Abb. 43 & Abb. 44).

Abb. 41: Gruppierter Multisinus (mit VPR (rot), ohne VPR (grün), Quellposition Q1)

Abb. 42: Gruppierter Multisinus (mit VPR (rot), ohne VPR (grün), Quellposition Q2)

Abb. 43: Gruppierter Multisinus (rot), 30s-Multisinus (grün) (Quellposition Q1)

Abb. 44: Gruppierter Multisinus (rot), 30s-Multisinus (grün) (Quellposition Q2)

5 Anhang

5.1 Ordnerverzeichnis

Funktion	Ordnerpfad
Messdefinition (1)	C:\Users\PAK\PakData\Tables\MessDef\Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizerung_30s
Messdefinition (2)	C:\Users\PAK\PakData\Tables\MessDef\Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizerung_18min
Messeinstellung (1)	C:\Users\PAK\PakData\Tables\Setup\Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_30s
Messeinstellung (2)	C:\Users\PAK\PakData\Tables\Setup\Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_18min
Grafikdefinition (1)	C:\Users\PAK\PakData\Tables\PlotEditor\Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_30s
Grafikdefinition (2)	C:\Users\PAK\PakData\Tables\PlotEditor\Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_18min
Variablen (1)	C:\Users\PAK\PakData\Tables\Arithmetic\Variables \Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_30s.pak_var
Variablen (2)	C:\Users\PAK\PakData\Tables\Arithmetic\Variables \Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_18min.pak_var
Variablen (2)	C:\Users\PAK\PakData\Tables\Arithmetic\Variables \Hallraum_Klassifizierung \ISO3741_AnhD_Hallraum_Klassifizierung_18min_M1.pak_var
Variablen (1) (2)	C:\Users\PAK\PakData\Tables\Arithmetic\Variables \Hallraum_Klassifizierung\Empty.pak_var
Formel (1)	C:\Users\PAK\PakData\Tables\Arithmetic\Formulas \Hallraum_Klassifizierung\Hallraum_IST_6mic_30s.pak_for
Formel (2)	C:\Users\PAK\PakData\Tables\Arithmetic\Formulas \Hallraum_Klassifizierung \Hallraum_IST_6mic_18min_Multisinus.pak_for
Formel (2)	C:\Users\PAK\PakData\Tables\Arithmetic\Formulas \Hallraum_Klassifizierung\Hallraum_IST_6mic_18min_FFT(Zeile 1-27).pak_for
Formel (2)	C:\Users\PAK\PakData\Tables\Arithmetic\Formulas \Hallraum_Klassifizierung\Hallraum_IST_6mic_18min_Versuch.pak_for
Formel (1) (2) (Hallraum_SOLL)	C:\Users\PAK\PakData\Tables\Arithmetic\Formulas \Hallraum_Klassifizierung\ Hallraum_SOLL.pak_for
Grafikvorlage (1)	C:\Users\PAK\PakData\Tables\Format \ISO3741_AnhD_Rohdaten(30s).vas_fly
Grafikvorlage (1)	C:\Users\PAK\PakData\Tables\Format \ISO3741_AnhD_FFT(30s).vas_fly
Grafikvorlage (2)	C:\Users\PAK\PakData\Tables\Format \ISO3741_AnhD_Rohdaten(18min).vas_fly
Grafikvorlage (2)	C:\Users\PAK\PakData\Tables\Format \ISO3741_AnhD_FFT(18min).vas_fly
Grafikvorlage (2)	C:\Users\PAK\PakData\Tables\Format\ISO3741_AnhD_FFT(Zeile 1-9).vas_fly
Grafikvorlage (2)	C:\Users\PAK\PakData\Tables\Format\ISO3741_AnhD_FFT(Zeile 10-18).vas_fly
Grafikvorlage (2)	C:\Users\PAK\PakData\Tables\Format\ISO3741_AnhD_FFT(Zeile 19-27).vas_fly
Grafikvorlage (1) (2)	C:\Users\PAK\PakData\Tables\Format \ISO3741 AnhD Hallraum Klassifizierung.vas fly

Abb. 45: Ordnerverzeichnis

- (1) 30s-Multisinus
- (2) gruppierter Multisinus