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Abstract

The following master thesis deals with Statistical Energy Analysis for room acoustics. In the
first chapters of the work SEA is introduced and the theory of SEA is described. Based on the
energy equations of simple resonators for different excitation scenarios, the calculations are ex-
tended to coupled systems and it is presented how to determine the energy equations for complex
systems. The goal of this thesis is to calculate the energy decay curves (that means temporally
dependent and not stationary results) of different rooms with SEA: at first the easiest case of a
rectangular room is described, then the energy decay curves of coupled rooms are dealt with and
in the last experiment a rectangular room containing plates is discussed. Moreover it is shown
how the reverberation time of the analysed rooms can be determined based on the decay curves.
The three experiments are evaluated by comparing the results with methods used in literature
and measurements respectively. Therefore a method is developed that can be used to simulate
the reverberation time of rooms.

Kurzfassung

Die vorliegende Masterarbeit behandelt die Methode der statistischen Energieanalyse für An-
wendungen der Raumakustik. In den ersten Kapiteln der Arbeit wird die Theorie der statis-
tischen Energieanalyse beschrieben. Ausgehend von den Gleichungen, die die Energieverteilung
in simplen Resonatoren für verschiedene Anregungen beschreiben, werden die Herleitungen auf
gekoppelte Systeme erweitert. Schließlich werden Berechnungen, die die Energieverhältnisse in
komplexen Systemen beschreiben, vorgestellt. Das Ziel der Arbeit ist es, Abklingkurven, das
heißt keine stationären, sondern zeitabhängige Ergebnisse für verschiedene Raumvarianten mit-
tels SEA zu ermitteln. Zu Beginn wird dazu ein rechteckiger Raum beschrieben, die Methoden
werden danach auf gekoppelte Räume umgelegt und zum Schluss wird ein Raum, der Diffusoren
enthält, diskutiert. Es wird auch gezeigt, dass basierend auf den Abklingzeiten von Räumen, die
Nachhallzeit der behandelten Räume berechnet werden kann. Die drei erwähnten Experimente
werden durch Vergleich der Resultate mit Methoden, die in der Literatur verwendet werden
bzw. durch Vergleich mit Messergebnissen evaluiert. Somit wird ein Verfahren entwickelt, das
zur Simulation von Nachhallzeiten verwendet werden kann.
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SEA for Room Acoustics

1
Introduction

1.1 Motivation and Overview

This master thesis deals with the calculation of decay curves based on Statistical Energy Analy-
sis. The calculation of reverberation times is an important discipline in room acoustics and can
be done, if the energy decay curve of a given room is known. The theory of SEA was developed
in the 1960s and since then SEA is used to analyse the acoustics of different situations. SEA can
be used to analyse high-frequency vibro-acoustic problems and is also applied to problems where
the main transmission paths of energy shall be discovered. The fields in which SEA is mainly
used are: analysis of vehicle interior noise (also interior noise of ships and trains is analysed by
SEA), vibrations of aircrafts and building acoustics as written in [Sarradj 2004].
SEA can be also used to determine the energy decay curve of a single, rectangular room as sup-
posed in [Pfreundtner 2014] and [Pfreundtner et al. 2015]. The nice thing in these mentioned
works is that the energy decay in a room can be calculated dependent on time. The results
of this method are time dependent and not steady state results and therefore it is possible to
calculate the reverberation time of the analysed room with this method.
In the following work the method presented in [Pfreundtner 2014] is extended to calculate the
energy decay curve of coupled rooms and rooms that contain plates. Moreover it is examined if
the method could be applied to non-rectangular rooms too. Based on the energy decay curve
other variables of acoustics can be derived, e.g. the reverberation time, which is presented in
the practical part of the work. The application of SEA for room acoustic problems makes sense
because the effort is less compared to other methods used in room acoustics, e.g. ray tracing or
FEM and the application of the method is very simple. In SEA the designer does not have to
rebuild the room in detail, only the dimensions of the analysed room and the absorption values
of the walls of the room have to be known.
This work shows that SEA can be used in different room acoustic scenarios and that the results
obtained with SEA are promising. Based on measurement results the results obtained with SEA
are evaluated and discussed and it can be seen that SEA is a good method to predict energy
decay curves in room acoustics.
In the first five chapters of the work the main theory of SEA is described. The contents of chap-
ters two to six are a summary of the book [Lyon and DeJong 1995] which is the main literature
for SEA. The contents of each chapter are summarized in the following section.

Chapter 1: This chapter gives a short introduction in the topic of the master thesis and the
contents of the chapters are presented.

Chapter 2: The basic principles of SEA are shortly described in this chapter. The historical
overview and the reasons why SEA became famous are also discussed. The chapter is finished
with an overview of the procedures used when applying SEA.

Chapter 3: The energy relations in a simple linear resonator are derived based on the solution
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1 Introduction

of the equation of motion of the resonator. The resonator is excited by different forces and
the results are discussed. More complex systems can be described by modal analysis, there-
fore principles of modal analysis are presented. Then the relations between mode approaches
and wave approaches are derived. Theory states that both methods should give the same results.

Chapter 4: The energy sharing of resonators is the basis for deriving the main statements of
SEA. Based on the simplest case of energy sharing between two subsystems, the discussions are
extended to multi-degree-of-freedom systems. Moreover the reciprocity principle is presented
that can be useful when determining coupling loss factors.

Chapter 5: In this chapter the estimation of response statistics for SEA is derived. It is also
stated why calculating the variance and the mean is important when dealing with SEA. Fur-
thermore confidence intervals are described that are a tool of probability theory that is often
used.

Chapter 6: The chapter gives a short description of how to use SEA in general. At first a
system model has to be defined and the parameters that are used in this model have to be
determined. It is also shown how the response variables can be obtained.

Chapter 7: The reverberation time of a single room can be obtained by using SEA. The SEA
model for a single room is built up. Therefore the room has to be divided into seven subsystems
where each subsystem belongs to a mode group. The damping loss factors, coupling loss factors
and initial energies for the seven subsystems are derived. By solving a differential equation the
energy decay curve of the rectangular room is given. Based on this curve the reverberation time
can be calculated. The chapter is finished with a comparison between measurement results and
results obtained with the SEA method.

Chapter 8: This chapter deals with the calculation of decay curves of coupled rooms. Equa-
tions are presented for the determination of the damping and coupling loss factors and the initial
energies in the case of coupled rooms. Based on the knowledge of these values the system of
differential equations can be solved and this leads to the result for the decay curve. The new
SEA method is compared to a method presented in [Bradley and Wang 2005]. The advantages
of the SEA method are highlighted and the SEA method is used for experiments, in which the
double slope that is typical for decay curves of coupled rooms, is examined.

Chapter 9: The equations that are needed for the calculation of the decay curve of a room
containing a plate are presented. One important factor when calculating the energy decay curve
of a room coupled with a plate is the radiation factor of the plate. Therefore the meaning of
this factor and analytical formulas for calculating this factor are shown. The results obtained
with the SEA method in case of a room coupled with three plates are compared to measurement
values.

Chapter 10: In this chapter the SEA method is used to calculate the energy decay curve of non-
rectangular rooms. The results obtained with the SEA method are compared to measurement
results that were made in a reverberation chamber. Finally the reverberation times for five
different setups are presented in tables, where the measurement values are compared to the
predicted values obtained with the SEA method.
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SEA for Room Acoustics

2
Statistical Energy Analysis

2.1 Basics of SEA

The theory of Statistical Energy Analysis (SEA) was introduced in the early 1960s. The term
describes important properties of the method.

• Statistical means that the results obtained with this method are expected values and
that the variables are part of statistical populations of analogue design construction. The
distributions of the dynamical parameters of these constructions are common.

• Energy emphasises that the variables of interest are energy variables. In SEA the system
under test is evaluated in terms of stored, dissipated and exchanged energies of vibration.
Other variables of acoustics, e.g. displacement or sound pressure can be determined based
on the energy of vibration.

• Analysis denotes that SEA is not a specific technique but a general approach.

In dynamical systems statistical methods have been in use for a long time. In mechanics, sta-
tistical approaches are applied to describe deterministic systems that are excited by a vibration
that is random in time, e.g. a plate that is excited by a point force. One basic aspect of SEA is
that it treats the vibrating system as part of a statistical population or ensemble. The temporal
behaviour of the system can be either random or deterministic. In conventional analysis of the
mechanical vibration of systems the main focus lies on the analysis of the low frequency range.
In most cases systems are excited by low frequencies which also cause the greatest displacement
response1. But with the introduction of large and lightweight structures in the aerospace indus-
try the interest on higher order modal analysis has strongly increased. Goal of this analysis is
to predict structural fatigue, equipment failure and noise production of the system under test.
The analysis of higher order modes is difficult because the systems’ resonance frequencies and
mode shapes strongly depend on the accuracy of the modal parameters, i.e. geometry, construc-
tion, and material properties. Furthermore computer programs that calculate the mode shapes
and frequencies2 are not exact for higher order modes and therefore it makes sense to apply a
statistical model for evaluating the modal parameters.
It is not only appropriate to use statistical methods from the nature of the dynamical problem,
but there is also reason for statistical approaches from the viewpoint of application. Designers
are often forced with the problem to predict systems’ behaviour in stages at a project where the
structural details are unknown. In these stages highly detailed analysis that requires specific
knowledge of the system is not meaningful, it is better to analyse the systems with statistical
methods at these stages of a project. In statistical approaches the knowledge of the exact pa-
rameters is less important.
Two disciplines of physics inspired the early developments of the SEA approach: (1) the theory

1 In mechanics displacement is the result of the change of the configuration of a body
2 FEM: Finite Element Method
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2 Statistical Energy Analysis

of room acoustics and (2) statistical mechanics.

(1) In room acoustic systems many degrees of freedom are excited. It is no curiosity that a
good sized room has over a million of modes in the audible frequency range. The theory of room
acoustics also describes the interaction between systems of many degrees of freedom, e.g. sound
transmission through a wall. The analysis that is done in room acoustics is based on both modal
analysis and wave models. Because of the fact that room acoustic systems contain many degrees
of freedom, it is highly justified to use statistical methods for the prediction of the behaviour of
the system under test.

(2) In statistical mechanics the random motion of systems that are described can have a few or
many degrees of freedom. All modes of these systems, independent of their resonance frequencies
have nearly equal energies and nearly incoherent motions, i.e. equipartition of energy. Equipar-
tition of energy means that all the modes have the same energy, i.e. the state of equal modal
energy. In SEA the term equipartition of energy is sometimes used for modes that have their
resonance frequencies in the same frequency band. A related discipline to statistical mechanics
is heat transfer. The theory of heat transfer states that the thermal energy flows from hotter
to cooler systems. It also says that the intensity of the flow is proportional to temperature
difference. This theory can be used to describe dynamical systems where the excitation source
is broad band noise. Narrow band sources have the same effects as broad band sources if system
averages are calculated.

The greatest advantage of statistical analysis compared to other methods, e.g. modal or wave
analysis is that the system under test can be described in a simpler way. In modal or wave
analysis a number of input parameters must be known. This is not the case in statistical analy-
sis. The disadvantage of statistical methods is that the results achieved with these approaches
are always uncertain to some extent because the results are average values over an ensemble
of systems and therefore differ from the results of the actually analysed system. This is not a
big problem in systems with a large number of modes because in such systems the fluctuations
will vanish. By calculating the mean, variance and the confidence intervals for predictions, the
uncertainty of the results can be described and the designers can decide whether they trust the
results or not.

2.2 Historical Overview

Two independent studies carried out by Lyon and Smith in 1959 set the basis for introducing the
name SEA. Lyon’s calculations dealt with two lightly coupled linear resonators. He described
the power flow between these resonators when they were excited by independent white noise
sources. His results showed that the power always went from the resonator with higher energy
to the one with lower energy. His work also showed that the energy exchanged between the
resonators was proportional to the uncoupled energies of the resonators. Smith’s calculations
[Smith 1962] dealt with a resonator that was excited by a diffuse and broad band sound field.
When the radiation damping passed the internal damping of the resonator, the response of
the system showed a limit. Smith’s calculations also showed that this limit was not related
to the exact value of the radiation damping. This is somehow strange because if a resonator
without damping is excited by broad band noise its response should go to infinity. But the limit
Smith found exists because of the reaction of the sound field on the resonator. This is called
radiation damping. In 1960 Lyon and Smith began to work together and found out that their
calculations described the same phenomenon: Power flows between systems until equilibrium is
reached. Later Lyon and Maidanik [Lyon and Maidanik 1962] answered the question how the
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findings by Smith and Lyon could be connected. In this work they found the basic parameters
that are needed for SEA response predictions:

• modal density,

• damping loss factor and

• coupling loss factor.

Because of Smith’s result the first applications of SEA dealt with sound-structure interaction, e.g.
room connected with plate, but soon also structure-structure interactions, e.g. two connected
plates, were described with this new method. In the beginning only two coupled systems (like
two plates) could be described but an extension to three and then many coupled systems was
developed. SEA became a famous method in the field of acoustics and therefore also many
computer programs3 were developed that could deal with SEA calculations.

2.3 The General Procedures of SEA

SEA is a procedure for describing and calculating the energy flow and the storage of dynamical
energy in a complex system. The general procedures of SEA shall be shortly described in the
following section.
In SEA a complex system is divided into energy storage elements or so called “subsystems” that
are groups of “similar modes”. Each storage element can be described by energy input that
usually comes from a random and external source. Moreover the energy dissipation from the
system’s damping and from the energy transfer between the subsystems describes the storage
element. The SEA model is analogue to that of an electric R-C circuit. In the SEA model,
energy is the equivalent to the electric charge in the R-C model and modal energy is the equiv-
alent to electrical potential. In Fig. (2.1) a typical SEA model can be seen that consists of four
subsystems. In Fig. (2.1) Ei stands for the energy that is stored in the ith subsystem, Ni stands
for the number of modes of the ith subsystem, Πi,in describes the amount of energy that is fed
into the subsystem, Πi,j stands for the energy that flows from subsystem i to subsystem j and
Πi,diss says how much energy is dissipated in the ith subsystem. By knowing the information on
injected power and the system parameters, i.e. Ni, Ei, Πi,j and Πi,diss the energy flow through
the complex system can be analysed. The equations that describe a complex system are linear
equations that can be written down in matrix form and can be solved using the methods of
linear algebra.
Subsystems are the fundamental elements of the SEA model and are defined as group of “similar”
energy storage modes. Subsystems, e.g. an acoustic volume, a beam or a bulkhead are sections
of the complex system under test that contain modes of the same type (flexural, torsional, and
acoustical). Subsystems should fulfill the criteria of similarity and significance:

• Similarity says that the behaviour of the modes of a subsystem should be nearly equal.
This means that they should be nearly equally excited by the sources, should have equal
damping and equal coupling to modes of other subsystems.

• Significance means that only subsystems that play an important role in describing the
general system are taken into consideration. Including subsystems that are not important
in terms of transmission, dissipation and storage of energy into the analysis does not lead
to errors but can complicate the calculations.

3 e.g. SEAM, VA One SEA Module or SEA+
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2 Statistical Energy Analysis

Figure 2.1: General SEA model containing of four subsystems [Lyon and DeJong 1995], p.10

The input power to a subsystem, defined as Πin is usually computed for a one-third or a full
octave band. The source of the input power can be a turbulent boundary layer, acoustical noise
or mechanical excitation. The input power should not be sensitive to the coupling between
subsystems. If this is the case the system that makes Πin available with its internal dynamics
has to be respected in the calculations.
The power that is dissipated by a subsystem named Πdiss is directly connected to the energy
stored in that subsystem. Πdiss describes the energy that is lost because of the mechanical vibra-
tion of the subsystem. There are different reasons for energy losses, e.g. dissipation by friction
or viscosity, radiation into the air, etc. Dissipated energy cannot be returned to the system, if it
could, another subsystem or coupling path had to be added to the model. The power transmis-
sion between two subsystems defined as Π12 describes the amount of energy exchange between
two subsystems. As described by the theory of heat transfer Π12 depends on the difference in
modal energy of subsystems 1 and 2. Another influence to the values of Π12 is the strength of
the coupling between the subsystems. SEA uses only time averaged energy quantities.
To evaluate the quantities that are shown in Fig. (2.1) the so called SEA parameters are needed.
Most of them were defined before SEA was developed. The SEA parameters can be divided into
a group of “energy storage” and “energy transfer” parameters.

• The group of energy storage parameters contains the number of modes N1, N2, . . . for each
subsystem in a defined frequency band ∆ω. In SEA calculations the number of modes Ni

is not always available and therefore often replaced by the modal density n that is defined
by the quotient N

∆ω .

• The group of energy transfer parameters consists of the input impedance to the system,
the source impedances to calculate the input power, the loss factor and the coupling loss
factor.

To evaluate the response of a system, the structure is divided into subsystems, then the men-
tioned parameters are determined and in the last step the overall system response is calculated.
The first step in the computation of the system response is the solution of the linear algebraic
equations to get the vibrational energy of each subsystem. In practice the number of these
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2.3 The General Procedures of SEA

equations, for every subsystem one equation is needed, is quite large and therefore computer
programs are used to solve the calculations. Based on the vibrational energy other variables
such as displacement, stress, pressure, etc. can be computed because the vibrational energy is
related to the velocity of motion. It is important to know that all these variables are spatially
averaged in SEA.
In the following chapter the energy conditions of a simple linear resonator that consists of a
stiffness element, a mass and a mechanical resistance are derived and the results discussed. The
energy equations of a simple linear resonator are the basis to extend the system to coupled
resonators and describe the energy flow between resonators.

SEA for Room Acoustics – 7 –
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3
Energy Discription of Vibrating Systems

At the beginning of this chapter the energetics of a simple linear resonator are discussed. In
Sec. (3.2) the resonator is used to describe the dynamics of the modal displacements in multi-
degree-of-freedom (dof) systems.

3.1 Modal Resonators

The resonator that is shown in Fig. (3.1) consists of a mechanical resistance R, a mass M and
a spring or stiffness element K. In the described system several forces occur:

Figure 3.1: Linear Resonator [Lyon and DeJong 1995], p. 18

• R is the reason for the force −Rẏ that acts in the opposite direction to the velocity ẏ of
M

• the stiffness element K is the reason for a force −Ky that points in the opposite direction
to displacement y(t) from the equilibrium position of the mass

• the third force is an external force l(t).

The mass is accelerated because of the impact of all these forces. This can be described with
the help of a differential equation:

l(t)−Rẏ −Ky = Mÿ. (3.1)

More often this equation is written as:

ÿ + ω0ηẏ + ω2
0y =

l(t)

M
, (3.2)

– 8 – SEA for Room Acoustics



3.1 Modal Resonators

where ω0 ≡
√
K/M is the natural radian frequency and η ≡ R/ω0M is the loss factor. In

the following sections, three different cases of vibration shall be determined: (1) free vibration
without damping (Sec. 3.1.1), free vibration with damping (Sec. 3.1.2) and the case of sinusoidal
forced vibration (Sec. 3.1.3).

3.1.1 Free Vibration - No Damping

For the analysis of the case free vibration - no damping the function l(t) = 0 in Eq. (3.1) and
also the loss factor η = 0, i.e. no damping. By applying these two modifications Eq. (3.1)
results in:

ÿ + ω2
0y = 0, (3.3)

which is a homogeneous, linear differential equation of second order. Such equations can be
solved by the so called “ansatz method”. By using this method the general solution of Eq. (3.3)
is:

y = Acos(ω0t) +Bsin(ω0t) = Csin(ω0t+ Φ), (3.4)

where ω0 = 2πf0 describes the radian frequency of the free and undamped oscillation of the
resonator. A and B (C and Φ) are the amplitudes and can take the value of any real number.
The kinetic energy, KE for the mass element and the potential energy PE for the stiffness
element at any time can be calculated with the following equations:

KE =
1

2
Mẏ2 =

1

2
MC2ω2

0cos
2(ω0t+ Φ) (3.5)

PE =
1

2
Ky2 =

1

2
KC2sin2(ω0t+ Φ). (3.6)

The sum E of these two energies is given by

E = KE + PE =
1

2
KC2 (3.7)

and depends only on the maximum amplitude of vibration. The system is isolated and not
damped. Therefore the vibrational energy should be independent of time, which is fulfilled
in the above equation. The period of the displacement and velocity is defined as 1

f0
= 2π

ω0
.

The kinetic and the potential energies can be averaged over one period. Averaging a squared
sinusoidal function over one period leads to the following equation:

〈sin2(ω0t)〉∼ =
2π

ω0

2π
ω0∫

0

sin2(ω0t)dt. (3.8)

With

1− 2sin2(ω0t) = cos(2ω0t) (3.9)

Eq. (3.8) can be rewritten as:

2π

ω0

2π
ω0∫

0

(
1

2
− 1

2
cos(2ω0t)

)
dt. (3.10)
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3 Energy Discription of Vibrating Systems

Solving this integral and simplifying it, the following result is obtained:

ω0

2π

(
π

ω0
− 1

4ω0
sin(4π)

)
=

1

2
. (3.11)

By knowing the result of Eq. (3.11), the averaging of the potential and the kinetic energy over
one period results in:

〈KE〉∼ = 〈PE〉∼ =
1

4
KC2 =

1

2
E. (3.12)

Discussing this equation one finds out that time average kinetic and potential energies are equal.
Furthermore one can see that they are equal to half of the total energy of vibration.

3.1.2 Free Vibration with Damping

In the case of free vibration with damping, η 6= 0 and respecting this in Eq. (3.2) leads to the
following equation:

ÿ + ω0ηẏ + ω2
0y = 0. (3.13)

Again the “ansatz method” can be used, therefore y can be written as:

y(t) = Ceαt. (3.14)

Differentiating this equation with respect to time twice and inserting the results in Eq. (3.13)
leads to:

Ceαt(α2 + ω0ηα+ ω2
0) = 0 (3.15)

The term in the brackets is called characteristic polynomial. Solving this quadratic equation, α
can take two values:

α = −1

2
ω0η ± jωd, (3.16)

where ωd ≡ ω0

√
1− η2/4. And the solution for Eq. (3.13) is:

y(t) = Ce−
1
2
ω0ηtsin(ωdt+ Φ). (3.17)

By analysing Eq. (3.17) it can be seen that in the case of free vibration with damping the
amplitude of the oscillation decreases exponentially in time. The radian frequency ωd is the
frequency of oscillation and is nearly equal to ω0 if the loss factor η < 0.3. If the loss factor fulfills
this constraint then the damped oscillation is basically the same as the undamped oscillation. It
should be mentioned that this limiting value of the loss factor is very large compared to typical
values in most structures and spaces.
As in the case of free vibration without damping the potential energy and the kinetic energy are
calculated for the case of free vibration with damping too. In this case the potential energy is:

PE =
1

2
Ky2 =

1

2
KC2e−ω0ηtsin2(ωdt+ Φ) (3.18)

For determining the kinetic energy, the derivative of y has to be calculated first:

ẏ = Cωde
− 1

2
ω0ηtcos(ωdt+ Φ)− 1

2
ω0ηCe

− 1
2
ω0ηtsin(ωdt+ Φ) (3.19)
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The kinetic energy can be calculated as shown in Eq. (3.5). Substituting ẏ in this equation
leads to:

KE =
1

2
Mẏ2

=
1

2
MC2e−ω0ηt

(
ω2

dcos
2(ωdt+ Φ)−ωdω0ηcos(ωdt+ Φ)sin(ωdt+ Φ) +

1

4
ω2

0η
2sin2(ωdt+ Φ)

)
=

1

2
MC2e−ω0ηtω2

0

(ω2
d

ω2
0

cos2(ωdt+ Φ)− ωd

ω0
ηcos(ωdt+ Φ)sin(ωdt+ Φ) +

1

4
η2sin2(ωdt+ Φ)

)

=
1

2
MC2e−ω0ηtω2

0

(
− ωd

ω0
cos(ωdt+ Φ) +

1

2
ηsin(ωdt+ Φ)

)2
. (3.20)

If these energy equations are averaged over period and if the little change in amplitude that
arises because of the exponential multiplier is neglected, the result is much simpler:

〈PE〉∼ '
1

4
KC2e−ω0ηt = 〈KE〉∼ =

1

2
〈E〉∼. (3.21)

The kinetic, potential and total energy in the case of free damped vibration is basically the same
as in the case of undamped vibration if η < 0.3. The following relationship is valid for damped
and undamped vibration:

〈y〉∼ = 〈ẏ〉∼/ω2
0. (3.22)

In Eq. (3.17) the term in the exponential function is −πηt/T . This means that the amplitude
decays with the logarithmic decrement, πη. The oscillations stop when the loss factor is twice
the critical damping ratio, ζ, this is the case when η → 2. From Eq. (3.21) it can be seen that:

〈E〉∼ = E0e
−ω0ηt. (3.23)

A very well known measure of damping in acoustics is the reverberation time TR. The reverber-
ation time is the time the vibrational energy needs to decrease by a factor of 10−6. By using the
exponential term in the last equation, a formula for the reverberation time can be developed:

e−ω0ηTR = 10−6. (3.24)

Solving Eq. (3.24) for TR leads to:

TR =
2.2

f0η
, (3.25)

which is a well established formula in acoustics.

3.1.3 Sinusoidal forced Vibration

In the case of a sinusoidal forced vibration the force l(t) applied to the linear resonator in
Fig. (3.1) is sinusoidal at radian frequency ω and can be written in exponential form:

l(t) = Re[|L|ej(ωt−Ψ)], (3.26)

where Re[] denotes the real part of the complex value. The dynamical equations are linear and
the response to the excitation can be treated as the response to the complex excitation and
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its complex conjugate. The response variables are therefore complex exponentials too. The
complex force and complex velocity are:

l(t) = Lejωt

ẏ(t) = V ejωt,
(3.27)

where L and V are complex numbers, i.e. |L|e−jΨ and |V |e−jΨ. The goal is to derive and
solve the differential equation in the case of a sinusoidal force. Therefore the velocity must be
integrated and differentiated to get ÿ and y:

ÿ(t) =
dẏ(t)

dt
= jωV ejωt

y(t) =

∫
ẏ(t)dt =

1

jω
V ejωt. (3.28)

In the next step these new values can be inserted in Eq. (3.2):

jωV ejωt + ω0ηV e
jωt + ω2

0

V ejωt

jω
=

Lejωt

M
. (3.29)

Simplifying this equation leads to:

L = V (jω0M)[(ω/ω0 − ω0/ω)− jη] ≡ V Z, (3.30)

where Z is the mechanical impedance of the resonator:

Z = (jω0M)[(ω/ω0 − ω0/ω)− jη]. (3.31)

The reciprocal value of Z is the mechanical mobility Y :

Y ≡ V

L
= [ω0ηM + j(ωM −K/ω]−1 (3.32)

with K = Mω2
0 and can be graphically represented as shown in Fig. (3.2). The power fed into

the resonator because of the sinusoidal excitation is Π = 〈lẏ〉t. The time average of the product
of complex variables can be written in terms of their complex amplitudes. By using this rule
the power can be written as:

Π = 〈lẏ〉t =
1

2
Re(LV ∗) =

1

2
Re(LL∗Y ∗)

=
1

2
|L|2Re(Y ∗) =

1

2
Re(V V ∗Z) =

1

2
|V |2Re(Z), (3.33)

where ∗ stands for the complex conjugate. The real part of Y is:

Re(Y ) = Re(1/Z) = Re(Z)/|Z|2 = ω0ηM |Y |2. (3.34)

Eq. (3.34) shows that also the input power depends on the frequency as shown in Fig. (3.2).
The maximum value of the power is:

Π =
1

2
|L|2/ω0ηM = 〈l2〉t/R.

– 12 – SEA for Room Acoustics



3.1 Modal Resonators

Figure 3.2: Mobility of a linear Resonator as a function of frequency [Lyon and DeJong 1995], p. 22

It is reached if the system has only a resistance i.e. when the imaginary part of the impedance
is 0. The power decreases if the resonance frequency of the system is left. Half the value of the
maximal power is reached at the frequencies ω = ω0 ± ω0η/2, when the assumption η < 0.3 is
fulfilled. In the frequency region ω < ω0(1 − η/2) R and M can be neglected and the mobility
can be described only by the stiffness term:

Y ' j ω
K
, (3.35)

defining the “stiffness controlled” region. For the frequencies ω > ω0(1− η/2) R and K can be
neglected and the mobility is approximated by keeping the mass term only:

Y ' − j

ωM
. (3.36)

This region is known as “mass controlled”. The region between the stiffness controlled and the
mass controlled regions is called “damping controlled” (see Fig. 3.2). In systems with many
degrees of freedom these simplified forms of behaviour of the resonator can be very helpful.
One important aspect in the case of sinusoidal excitation is that the resonance can often be better
described by examination of the phase of the response than by the amplitude of the response.
The phase of a complex variable is in general defined as Arg{X} = tan−1|Im(X)/Re(X)|. The
phase of the mobility function is the phase of the velocity with respect to the force and is the
same as the phase of Z∗:

Arg{Z∗} = tan−1|{ω − ω0/ω}/ω0η| = tan−1|2(ω − ω0)/ω0η|. (3.37)

There is a strong change in phase as the system passes through resonance. The smaller the
damping the quicker this phase change happens. The behaviour of the phase is in contrast to
the behaviour of the amplitude at resonance, because the amplitude has a horizontal slope at
ω = ω0. This is also the reason why resonance can be better described by the phase than by the
amplitude. Another interesting point in discussing the resonator excited by a sinusoidal force is
the mean square response at resonance:

〈ẏ2〉 =
1

2
|V |2 =

1

2
|L|2/ω2

0η
2M2, (ω = ω0). (3.38)
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The average values of y and ÿ at resonance result in:

〈y2〉 =
1

2
|V |2/ω2

0 = 〈ẏ2〉/ω2
0 (3.39)

and

〈ÿ2〉 =
1

2
|V |2ω2

0 = ω2
0〈ẏ2〉. (3.40)

These relations that are derived from sinusoidal excitation show the same results as the relations
for free vibration. It must be noted here that Eq. (3.39) and Eq. (3.40) are not valid outside
the damping controlled region, but can be used with a high degree of accuracy in the bandwidth
|ω − ω0| < 1

2ω0η, known as half bandwidth.

3.1.4 Random Excitation

In most applications in which SEA is used the system under test is excited randomly. It should
be noted here that the critical features of SEA ask for a statistical model of the system that is
excited and not for the excitation itself. But the advantage of a random excitation is that much
less averaging of the system parameters has to be done and that there is a smaller variability
of the response from the mean. It is difficult to define a random signal accurately. Here, a
stationary random signal is derived from an experimental viewpoint. A filter with the frequency
response shown in Fig. (3.3) is assumed. The load function l(t) acts as input to this filter.

Figure 3.3: Frequency Response of a rectangular filter [Lyon and DeJong 1995], p. 24

The bandwidth ∆f of the filter is assumed to be very small. The force applied to the filter
can be said to be random if the mean square output of the filter is proportional to ∆f . This
constraint is not fulfilled by a pure tone, because if the frequency of the tone is a frequency that
is contained in the pass band of the filter, the mean square output of the filter would not be
dependent on the bandwidth. This last declaration is also true for any deterministic, periodic
signal.
The mean square force that belongs to a band of frequencies is defined as:

〈l2〉∆f = Sl∆f, (3.41)

where Sl is a proportionality factor. Usually this proportionality factor has a center frequency
and is therefore a function of f , i.e. Sl(f). This function is known as the power spectral density
(psd) of the random input force l(t). It is assumed that the psd of l(t) is calculated for each
frequency f and the result is shown in Fig. (3.4). Then l(t) is fed into two filters like the
one discussed before. The filters have the center frequencies f1 and f2. The mean square of
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Figure 3.4: PSD of l(t) sampled by two narrow band filters [Lyon and DeJong 1995], p. 25

the output of the system that consists of the two filters can be calculated by adding the mean
squares of the two time functions that consist of different frequency components. So the overall
output of the two filters is:

〈l2〉 = Sl(f1)∆f + Sl(f2)∆f. (3.42)

This equation can be generalised, a filter with unity gain between the frequencies f1 and f2 has
the mean square output

〈l2〉 =

f2∫
f1

Sl(f)df. (3.43)

For a general gain G(f) the output becomes

〈l2〉 =

f2∫
f1

Sl(f)G(f)df. (3.44)

If f1 = 0 and f2 =∞ then the total unfiltered mean square value of the filter is calculated.
Noise excitations that have constant power spectral densities are known as “white noise” signals.
White noise signals produce the following mean square forces in a narrow frequency band, here
called df :

〈l2〉df = Sldf. (3.45)

This force at frequency f produces a mean square velocity response of the resonator, since force
and velocity are connected through mobility:

〈ẏ2〉df = Sldf |Y |2. (3.46)

The total mean square velocity can be calculated analogue to Eq. (3.43), by integrating over
the whole frequency range (for white noise):

〈ẏ2〉 =

∞∫
0

Sl|Y |2df = Sl

∞∫
0

|Y |2df. (3.47)

Except for a constant the psd of ẏ has the form that is shown in Fig. (3.2). By looking at
the form of the mobility in Fig. (3.2) it can be found out that the damping controlled region
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contributes most to the integral in Eq. (3.47). Therefore it is meaningful to introduce the
concept of “equivalent bandwidth” or “noise bandwidth”, called ∆e. It is the bandwidth of a
system that has a rectangular pass band. This pass band is characterised by a constant mobility
that is defined only by damping, Ymax = (ω0ηM)−1. The response of the pass band to white
noise excitation is equal to the response of the actual system. In a mathematical sense this can
be written as:

〈ẏ2〉 = Sl∆e(ω0ηM)−2 =
1

2π
Sl(ω0ηM)−2

∞∫
0

dω

1 + (ω2 − ω2
0)/η2ω2ω2

0

. (3.48)

A change of variables can be helpful to solve this integral, i.e. ξ = 2(ω − ω0)/ηω0 and it can
be further simplified by using the knowledge that the biggest part of the integral is provided at
ω = ω0 or ξ = 0. These simplifications lead to:

∞∫
0

· · · → ηω0

2

∞∫
−∞

dξ

1 + ξ2
=
ηω0

2
(tan−1(∞)− tan−1(−∞)) =

πηω0

2
. (3.49)

By using this solution of the integral the noise bandwidth is defined as:

∆e =
π

2
ηω0, (rad./sec.) (3.50)

or

∆e =
π

2
ηf0, (Hz.). (3.51)

The equivalent bandwidth is the same as the “half power” bandwidth increased by the factor
π
2 . In many cases the description of the resonator by the equivalent filter can be useful. From
Eq. (3.48) that describes the velocity of the system, it is simple to calculate the displacement.
The mean square displacement is given by:

〈y2〉 =
1

2π
Sl(ω0ηM)−2

∞∫
0

dω

ω2[1 + (ω2 − ω2
0)/η2ω2ω2

0]
. (3.52)

If it is supposed, as in the sections before that the level of damping is low, i.e. η < 0.3, the
mean square displacement is:

〈y2〉 = 〈ẏ2〉/ω2
0. (3.53)

If Eq. (3.48) is differentiated to get the mean square acceleration, a problem occurs because the
integral

〈ÿ2〉 =
1

2π
Sl(ω0ηM)−2

2πfmax∫
0

ω2dω

1 + (ω2 − ω2
0)/η2ω2ω2

0

(3.54)

does not converge for fmax → ∞. But for large ω the integrand simplifies to ω2
0η

2. The above
described problem can therefore be solved by “subtracting out” this part, which leads to:

〈ÿ2〉 = ω2
0〈ẏ2〉+ Slfmax/M

2. (3.55)
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The second term of Eq. (3.55) describes the mass controlled acceleration whereas the first term
stands for the damping controlled acceleration. In those cases of random excitation in which
the resonant parts dominate, this is true for most but not for all situations, the mass controlled
acceleration can be cancelled out and the equation for the acceleration simplifies to:

〈ÿ2〉 = ω2
0〈ẏ2〉. (3.56)

It was shown that free vibration and resonant response to either sinusoidal or random excitation
related the mean square (m.s.) displacement, velocity and acceleration in the same way. This
finding makes it possible to change from one response variable to another without concern for the
accurate nature of excitation. But it has to be kept in mind that the requirements of resonant
dominated response have to be fulfilled for these relations to be true (η < 0.3).

3.2 Modal Analysis of Distributed Systems

In practical applications a mechanical designer has to deal with much more complicated systems
than that of a linear resonator. If there is a displacement in a distributed system4, that leads to
an increase in the potential energy, then this increase is resisted by the elastic restoring forces.
Damping forces resist changes of displacement of the system. The mass elements are accelerated
based on these two forces together with the loading excitation. In this section it is found that
modal density has two important functions: describing the energy capacity of a structure and
to determine the power that the system absorbs in case of noise excitation. If the generalised
displacement of the system is called y, the described relations can be mathematically written
down as:

ρÿ + rẏ + Λy = p, (3.57)

where p stands for the distributed excitation, ρ describes the mass density, r is known as a
viscous resistance coefficient and Λ is a linear operator that contains differentiations with re-
spect to space. If such a system is bounded, the system’s equations are often solved by using
eigenfunctions Ψn. The boundary conditions must therefore be well defined. The eigenfunctions
are solutions to the following equation:

1

ρ
ΛΨn = ω2

0Ψn. (3.58)

In Eq. (3.58) the boundary conditions that are satisfied by y also have to be fulfilled by Ψn.
The term ρ−1Λ and the boundary conditions are responsible for the values ω2

n. The expansion
of the response and excitation in these functions leads to:

y =
∑
n

Yn(t)Ψn(x)

p/ρ =
1

M

∑
n

Ln(t)Ψn(t).
(3.59)

Eq. (3.58) is multiplied by Ψm and integrated over the region occupied by the structure. Then
exactly the same equation is subtracted, but the indices of the subtracted equation are reversed.

4 This is a system, where mass, resistance and stiffness are distributed over the space that is filled by the
structure.

SEA for Room Acoustics – 17 –



3 Energy Discription of Vibrating Systems

This procedure leads to:∫
{ΨmΛΨn −ΨnΛΨm}dx = (ω2

n − ω2
m)

∫
Ψmρ(x)Ψndx. (3.60)

Of course this statement is true if n = m, but this is a trivial solution. Conditions exist where the
above equation is fulfilled if n 6= m. Under these conditions the differential operator vanishes,
this means that the term

∫
ΨmΛΨndx has to vanish. This happens if the eigenfunctions are

orthogonal. If the amplitudes of the eigenfunctions are normalised by the mass, the result is
known as mass density weighted average of the product ΨmΨn. The normalisation can be written
as:

1

M

∫
ΨmρΨndx ≡ 〈ΨmΨn〉 = δm,n. (3.61)

The expanded equations for the response and excitation can be inserted in Eq. (3.57) which
leads to:

ρ
∑
n

(
Ÿn +

r

ρ
Ẏn + ω2

nYn

)
Ψn =

ρ

M

∑
m

LmΨm. (3.62)

Multiplying Eq. (3.62) with Ψn(x) and integrating it over the system domain results in:

M{Ÿn + ∆Ẏn + ω2
nYn} = Ln(t). (3.63)

This result is very useful, because it means that each modal response amplitude can be described
by the equation of a linear resonator that was discussed in Sec. (3.1) in detail. Based on
this finding and the knowledge of the spatial orthogonality of the mode shapes, as shown in
Eq. (3.61), a complex dynamical system can be treated as a group of independent resonators of
mass M , stiffness ω2

nM and mechanical resistance M∆ = Mωnηn.
The modes and the ωn’s correspond to each other, therefore the ωn’s can be used to keep track
of the modes. The equations for the mode shapes and the resonance frequencies of a rectangular
plate are derived as an example.
The two dimensional plate has dimensions L1 and L2 and is isotropic and homogeneous. In this
case the mode shapes of the plate for bending motion are defined as:

Ψn1, n2 = 2sin
n1πx1

L1
sin

n1πx1

L2
. (3.64)

The resonance frequencies can be calculated with the following equation:

ω2
n1, n2

=

[(n1π

L1

)2
+
(n2π

L2

)2
]2

κ2c2
l ≡ (k2

1 + k2
2)κ2c2

l ≡ k4κ2c2
l . (3.65)

In Eq. (3.65) n1 and n2 stand for integers, κ for the radius of gyration of the plate cross-
section. The longitudinal wavespeed in the plate material, cl can be calculated with the formula
cl =

√
E/ρm, with E the Young’s modulus and ρm the material density. Eq. (3.65) leads to

a useful ordering of the modes. The modes can be drawn in a wavenumber lattice as shown
in Fig. (3.5) in which every lattice point belongs to a mode. Another information that can be
obtained from the wavenumber lattice is that the distance from the origin to a point of the lattice
that corresponds to one mode, is the resonance frequency of the mode ωn. The ordering makes
mode counting possible: The number of modes that have resonance frequencies in a particular
frequency interval can be determined. In Fig. (3.5) the ordering indices form a lattice and each
lattice point belongs to an area, ∆Ak = π2/Ap in the wavenumber plane where Ap is the plate’s
area. If the wavenumber is increased, e.g. by ∆k a new area, i.e. 1

2πk∆k is introduced. The
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Figure 3.5: Wavenumber lattice for rectangular supported plate [Lyon and DeJong 1995], p. 31

number of new modes is on average

n(k) =
πk∆k

2∆Ak∆k
=

πk

2∆Ak
. (3.66)

If the frequency is increased by 1 rad./sec. the average number of modes that result from
this increase is known as modal density in radian frequency, n(ω). By reformulating the rela-
tion n(ω)∆ω = n(k)∆k the equation for determining the modal density in radian frequency is
obtained:

n(ω) =
πk

2∆Ak
· ∆k

∆ω
=

πk

2cg∆Ak
, (3.67)

where ∆ω/∆k is the group velocity cg. This is valid in systems with phase velocities ω/k. The
modal density in cycles per second (Hertz) for a flat plate in which the group velocity is twice
the phase velocity, cg = 2cp and the phase velocity is defined as cp = ω/k =

√
ωκcl, can be

calculated with the following equation:

n(f) = n(ω)
dω

df
=

2π2ωAp

4c2
pπ

2
=

Ap

2κcl
=

√
3Ap

hcl
. (3.68)

To obtain this result it was used that the radius of gyration for a flat and homogeneous plate
of thickness h is defined as κ = h/2

√
3. The modal density for the plate is independent of

frequency and is for the same material higher if the area of the plate is increased or the thickness
is decreased.
Using the orthogonality relation that was discussed before the kinetic energy of vibration is
derived:

1

2

∫
dxρ

(∂y
∂t

)2
=

1

2

∫
dx
∑
m,n

Ẏm(t)Ẏn(t)ρΨm(x)Ψn(x) =
1

2
M
∑
n

Ẏn(t). (3.69)

The kinetic energy of the system is obtained by adding up the kinetic energies of the modes.
The total energy of the system is the sum of the total energies of the modes because the kinetic
and the potential energy of resonators at resonance are equal.
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3.2.1 Response of System to Point Force Excitation

At location xs on the structure a point force that has the amplitude l0 is applied to the system.
With the help of Eq. (3.59) the modal amplitudes are given as:

Lm(t) =

∫
pΨmdx = l0(t)Ψm(xs). (3.70)

If the excitation has the form l0(t) = L0e
jωt and is inserted in Eq. (3.63), the following equation

is obtained:

M(ω2
n + jωωnη − ω2)Yn = L0Ψn(xs). (3.71)

The formal result for the response of the system for this kind of excitation is:

y(x, t) =
L0e

jωt

M

∑
n

Ψm(xs)Ψn(x)

ω2
n − ω2 + jωωnη

. (3.72)

The input mobility of the system is given as the ratio of the velocity at the excitation point xs

(jωy(xs)) to the applied force.

Y =
V (xs, ω)

L0
=
jω

M

∑
n

Ψ2
n(xs)

ω2
n − ω2 + jωωnη

≡ G+ jB, (3.73)

where the complex mobility can be divided into a real and an imaginary part. The real part of the
mobility, termed conductance, is determined as G and the imaginary part termed susceptance
is stated as B. The complex ratios can be rationalised and then G can be written as:

G =
∑
n

an(xs)gn(ω), (3.74)

with an = Ψ2
n(xs)/ωωnηM and gn = (ξ2 + 1)−1. ξ is given in the paragraph below Eq. (3.48).

The susceptance can be written as:

B =
∑
n

an(xs)bn(ω), (3.75)

with bn = ξ(ξ2 + 1)−1. The damping is supposed to be small for these equations to be true
(η < 0.3).
The total mobility is a function of frequency and is quickly changing with frequency. The
mobility can be simplified by calculating averages of Y with respect to ξ. This can be justified if
the system is described as a “random” system. This means that the mode shapes and resonance
frequencies cannot be determined exactly. Therefore it is supposed that the resonance frequencies
are random variables with uniform distribution over a frequency interval. This procedure can
be said to be an example of statistical modelling that is widely used in SEA. But it is not
only used in SEA, statistical modelling also appears in real world problems, because there are
always variations in geometry and material properties that have an influence on the resonant
frequencies and mode shapes. Therefore the analysis should include the statistical distributions
of the system parameters.
If the interval in which the resonance frequency can vary is ∆ω, the averaging over ωn leads to:

〈gn〉 =
ωη

2∆ω

∞∫
−∞

dξ

ξ2 + 1
=
πωη

2∆ω
. (3.76)
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The interval ∆ω provides n(ω)∆ω modes that have an influence on the average value. Averaging
leads to an average conductance:

〈G〉ωn, ys =
n(ω)∆ω

ωηM
· π

2∆ω
ωη〈Ψ2

n〉 =
π

2

n(ω)

M
= (4Mδf)−1. (3.77)

Eq. (3.77) is a general result that is valid for multimodal systems, e.g. a flat plate. The average
mobility of a finite system can often be found by using the results of infinite systems. This is
very useful in practice and for example true for a flat plate. The average susceptance vanishes
when the modal density is constant. In cases in which the modal density varies the average
susceptance is the same as that of the same system infinitely extended.
The input force is changed to noise excitation. This means that the force in Eq. (3.70) has a
flat spectrum over the band ∆ω and the power that excites any mode can be derived from the
dissipation ω0ηM〈ẏ2〉. Sl describes the spectral density of the force l(t) and can be calculated
with SlΨ

2
n(xs)/4M . The noise acts in the bandwidth ∆ω [rad/sec] and the modes that randomly

result from this noise force are given as n∆ω. This leads to an equation for the input power to
the system, where averaging is done:

〈Π〉 =
π

2

Sl∆ω

2π
· n(ω)

M
= 〈l2〉〈G.〉 (3.78)

In this equation the conductance is again 〈G〉 = πn(ω)/2M . The conductance can be used to
determine the number of modes that can be used to absorb energy from a noise force. This means
that there is a strong relationship between conductance and modal density and conductance can
be used to measure the modal density in systems where counting resonance peaks is not possible.

3.3 Dynamics of Infinite Systems

In the case of infinite systems, the systems analysed are greatly extended but the differential
equation describing the motion of the system given by Eq. (3.57) is still valid. Some changes
are made concerning the assumptions of the parameters: mass and damping distributions in
the case of infinite systems are supposed to be uniform, i.e. ρ and r are constant and Λ[∂/∂xi]
is assumed to be a polynomial with constant coefficients. Therefore the equation for unforced
motion can be solved with a wave approach of the form:

y ∼ e−j(~k~x−ωt). (3.79)

Using this relation and substituting it in the equation of motion the “dispersion relation” between
frequency and wavenumber can be derived:

−ρω2 + jωr + λ[−jki] = 0. (3.80)

In the case of an undamped string r = 0, ρ = lineal density,

Λ[∂/∂xi] = −T (∂/∂x)2 = −Tj2k2 = T 2k2,

where T is the tension of the string and the speed of free waves on the string is c =
√
T/ρ. With

these definitions the equation of motion for the undamped string is:

Tk2 = ρω2; k2 =
ρω2

T
; k =

√
ρω2

T
= ω

√
ρ

T
= ±ω/c. (3.81)
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In a second example the dispersion relation for undamped bending motions of a thin beam are
derived. In this case

Λ[∂/∂x] = B(∂/∂x)4, (3.82)

with B the bending rigidity of the beam given by B = ρc2
l κ

2. The phase velocity for bending
waves on a beam is frequency dependent:

cφ =
√
ωκcl (3.83)

and therefore the system is called dispersive. Using all these definitions the dispersion relation
of the beam can be written as:

ρω2 = Bk4 = ρc2
l κ

2k4; k4 =
ω2

c2
l κ

2
≡ (ω/cφ)4. (3.84)

If damping would be included, this would result in a complex propagation constant k and the
wave would be attenuated.
In infinite free wave systems energy variables are very important and the main focus of interest
lies on the energy density that describes the energy of vibration per unit length, area or volume.
Kinetic and potential energy densities of such systems can be proven to be equal. This means
that the total energy density of the system equals the kinetic energy density multiplied with
two, or ρ(∂y/∂t)2. The power flowing through a unit width or area of a system resulting from
a propagating wave has the same intensity I as a free wave. The energy or group velocity
cg = dω/dk describes the amount of structure that is filled with energy, if the power flow lasts
for one second. E is called energy density and Ecg = I describes the energy that passed the
reference location. Using Eq. (3.80) and setting r = 0 the energy velocity can be written as:

cg =
dω

dk
=
−j
2ρω

Λ′[−jk]. (3.85)

With the relation E = ρ(∂y/∂t)2 the intensity becomes

I =
jω

2
〈y2〉tΛ′[−jk]. (3.86)

The intensities for the string and the thin beam are calculated as examples. In the case of the
string Λ[−jk] = −T (−jk)2 and Λ′[−jk] = 2T (jk). Inserting these expressions in Eq. (3.86)
leads to the intensity of the string:

Istring = +
jω

2

〈
y2
〉

t
(+ρc2)2jk = ρc

〈
(
∂y

∂t
)2
〉

t
. (3.87)

For the beam Λ = ρκ2c2
l (−jk)4 and Λ′ = 4ρκ2c2

l (−jk)3. And as before by inserting these
expression in Eq. (3.86) the intensity of the beam becomes:

Ibeam = +
−j
2ω

〈(∂y
∂t

)2〉
t
4ρκ2c2

l (−jk)3 = 2ρcφ

〈(∂y
∂t

)2〉
t
. (3.88)

In both examples string and beam, the intensity is a mean square velocity of motion of the
system, multiplicated by an impedance term. The impedance term is given by ρc, where ρ
stands for the density and c for the wavespeed. The propagation constant becomes a complex
value if the system is damped. In the case where damping is included the dispersion relation
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can be written as:

k(ω)→ k
[
ω
(

1 +
−jη

2

)]
. (3.89)

This perturbation in frequency leads to a perturbation in wavenumber given by ∆k = ∆ω/cg

and results in a new wave function:

e−jkx → e−jkxe−∆kx = e−jkxe−ωηx/2cg . (3.90)

The amplitude is decreased by 1 neper due to this factor after the wave passed the distance
2cg/ωη.

In the last section the impedance of a finite plate was discussed, now the impedance of an
infinite plate is calculated. The equation of motion for a two dimensional flat plate is given by
Eq. (3.57). The linear differential operator is

Λ = ρκ2c2
l

[( ∂

∂x1

)2
+
( ∂

∂x2

)2]2
. (3.91)

The point force L0e
jωt is applied to the system at position x = 0. The mobility of the plate

can be calculated by the ratio of the velocity to the applied force. The difficulty is to determine
the motion y at position x = 0, but y is needed for the calculation of the velocity ∂y/∂t. The
motion is calculated with the help of two-dimensional Fourier transforms:

p(~x) =
1

(2π)2

∫ ∫
P(~k)e−j

~k·~xdk1dk2

P(~k) =

∫ ∫
p(~x)ej

~k~xdx1dx2.

(3.92)

The motion y(~x) and its transform Y(~k) have the same relation as p(~x) and its transform P(~k).
The second integral in the last equation simplifies to P(~k) = L0 because p(~x) is applied only
at x = 0 with the force L0. The introduced transform is used to arrange a new version of the
equation of motion:[

− ω2(1− jη)ρ+ Λ(−jk1,−jk2)
]
Y(~k) = L0. (3.93)

Reformulating this equation leads to:

Y(~k) =
L0

Λ[−jk1,−jk2]− ω2(1− jη)ρ
. (3.94)

Using Eq. (3.94) gives:

y(0) =
L0

(2π)2

∫ ∫
1

Λ[−jk]− ω2(1− jη)ρ
dk1dk2. (3.95)

The area element can be rewritten as dk1dk2 → 2πkdk because there is no azimuthal dependence
in the k1, k2 integration. This results in a simple integration over k:

y(0) =
L0

2π

∞∫
0

1

ρκ2c2
l [k4 − k4

b(1− jη)]
kdk. (3.96)
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Introducing a variable change ξ = k2 → dk = dξ/2k and ξb = k2
b the integral becomes:

y(0) =
L0

2π

∞∫
0

dξ
1

ξ2 − ξ2
b(1− jη)

. (3.97)

This integral can be rewritten:

y(0) =
L0

8πρκ2c2
l

∞∫
−∞

dξ

[ξ − ξb(1− jη/2)][ξ + ξb(1− jη/2)]
. (3.98)

If the limit is assumed to be η → 0 and the path of integration is the one shown in Fig. (3.6)
then the result of this integral is:

y(0) =
L0/(jω)

8ρκcl
. (3.99)

The mobility of the infinite plate is the ratio of the velocity jωy(0) to the force L0:

Figure 3.6: Contour for evaluation of integral [Lyon and DeJong 1995], p. 38

Y∞ = (8ρκcl)
−1. (3.100)

This result is exactly the same as the one for the mobility of the finite plate when it was averaged
over the modal response and source location. The amount of power injected into an infinite plate
due to a mean square force 〈l2〉 that is fed into the infinite plate at a point, is:

Πin = 〈l2〉Y∞. (3.101)

This results in a circular wave that will propagate with the speed of the energy velocity starting
from the point of excitation. If the wave reaches a boundary, it is reflected and propagates
unobstructed until the next boundary is reached. The average distance between reflections
covered by the wave is known as “mean free path”, d. The mean free path can be calculated
by d = πAp/P . P is the perimeter of the plate and Ap stands for the surface area of the plate.
With the help of Eq. (3.90) the attenuation rate can be derived. The wave attenuates with
ωη/2cg nepers per unit length, which is the same as 4.34 ωη dB/sec. The reflections lead to
rebounding energy and the vibration field resulting from this energy is called reverberant. The
velocity spectrum of this field is termed Sv, rev(ω) and the intensity in the range of the angle
dΘ is described by the formula dI = ρscgSv(ω)dΘ/2π. Integrating only over the directions of
the wave that fall onto the boundary and using only the component of the intensity that is
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perpendicular to the boundary, the intensity on the boundary per unit length is:

In(ω) = ρscgSv, rev(ω)/π. (3.102)

The average modal energy can be introduced as

Emodal = M〈v2〉/n(ω)∆ω = ρASv(ω)/n(ω). (3.103)

The modal density can be substituted by Eq. (3.67) which leads to:

In(ω) = kEmodal/π. (3.104)

Through this equation the modal energy is directly related to the intensity falling on the bound-
ary. This is a useful result because it links the method of SEA with power-flow methods. The
reverberation time can be calculated from Eq. (3.90) for systems in which the energy is stored
in the propagation of free waves. The reverberation time is the time in which the energy of the
system decays by 60 dB. By using Eq. (3.90) it is known that 4.34ωη = 60, and this leads to:

TR =
2.2

fη
. (3.105)

This is the same result as that derived earlier for the modal resonators and for a single dof
system. The decay rate is often used to calculate the loss factor and can be applied for systems
described by either modes or waves.
The interaction between a resonator that is composed of a mass M , a stiffness K, a dashpot
resistance R and a finite plate as shown in Fig. (3.7) is discussed in the following section.
The mean square velocity of the resonator that results from the random vibrations of the plate

Figure 3.7: Interaction of a single resonator and a plate [Lyon and DeJong 1995], p. 40

is calculated. A transverse velocity v exists due to a diffuse reverberant vibrational field on
the plate. The plate velocity at the point where the resonator and the plate are connected is
termed vs. The velocity that exists due to the resonator mass is called vM. The difference of
the velocities vs and vM combined with the compression of the spring K result in a force, called

SEA for Room Acoustics – 25 –



3 Energy Discription of Vibrating Systems

reaction force:

l = K

∫
(vs − vM)dt = M

dvM

dt
+RvM. (3.106)

The velocity vs is the same as the velocity v that would exist without a resonator, minus the
velocity vr that is called induced or reaction velocity. The induced velocity is defined as l〈G〉,
it depends on the reaction force. 〈G〉 stands for the plate admittance, given by (8ρsκcl)

−1. If
we use 〈G〉 the modal density of the plate should be quite high, so that the following relation is
true:

π

2
ω(ηp + η0)np � 1. (3.107)

This means that several plate modes exist in the combined equivalent bandwidth of the resonator
and the plate modes. Eq. (3.106) is differentiated with respect to time and the relations
described before are used resulting in the following differential equation:

M
d2vM

dt2
+R

dvM

dt
+KvM = Kv −Kl〈G〉. (3.108)

Instead of writing l the relation given by Eq. (3.106) can be inserted to obtain:

d2vM

dt2
+ ω0(η0 + ηcoup)

dvm

dt
+ ω2

0(1 + η0ηcoup)vM = ω2
0v, (3.109)

with ω0 ≡
√
K/M , η0 = R/ω0M and ηcoup = ω0M〈G〉. If a random excitation velocity is applied

to a resonator, the response of the resonator is described by Eq. (3.109). If this velocity has a
flat spectrum 〈v2〉/(∆ω) over the bandwidth ∆ω then the response of the resonator becomes:

〈v2
M〉 =

π

2

ω0

η0 + ηcoup

〈v2〉
∆ω

(3.110)

or

M〈v2
M〉 =

ηcoup

η0 + ηcoup

Mp〈v2〉
np∆ω

. (3.111)

The last term in Eq. (3.111) specifies the ratio of the vibrational energy of the plate to the
number of modes in the band ∆ω. Because of the fact that the ratio ηcoup/(ηcoup +η0) is always
less than or equal to one, the average modal energy of the plate is always greater than or equal
the average energy of vibration of the resonator. Only in case of a strong coupling, i.e. when
the coupling loss factor ηcoup is large compared to η0 the energies are equal. If the energies are
equal this is called “equipartition of energy”, a famous principal in statistical mechanics.

3.4 Mode-Wave Duality

Systems can be described by modal descriptions or wave descriptions as presented in the previous
sections. These two ways of describing the motion of systems should give the same results but
in some cases a wave approach makes more sense and in other cases it is more intelligent to use
a modal approach. For example, the damping that occurs at the boundary of a plate can be
nicely described by the method of wave reflections, whereas a modal description would be very
difficult and complicated. But a description of the spatial variations in vibration amplitude in
terms of wave analysis is very hard, whereas a modal analysis of this phenomenon is much easier.
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It should be kept in mind that at least in theory both methods should give the same results.
When discussing applications of Statistical Energy Analysis, certain quantities of the modal
description can be found that equal other quantities of the wave description, e.g. modal energy
and spatial energy density are connected through a proportionality factor. The coupling loss
factors that are typical of modal systems and the junction impedances or transmissibilities that
are typical of wave approaches are also equivalent quantities. The incident power on a junction
between two plates is discussed as another example in the following section.
The junction between two plates a and b has the length Ljunct. The incident power acts in the
frequency band ∆ω. These definitions are graphically presented in Fig. (3.8). The incident

Figure 3.8: Connection of two plates [Lyon and DeJong 1995], p. 43

power is given by

Πinc = In(ω)Ljunct∆ω, (3.112)

with In defined in Eq. (3.102). The transmitted power Πtrans can be expressed with the help
of a variable that stands for the transmissibility τ :

Πtrans = τΠinc = τIn(ω)Ljunct∆ω = τkLjunctEmodal∆ω/π (3.113)

when inserting Eq. (3.104) for In. Another equation for the calculation of the power flow results
by using Eq. (3.67) and introducing a coupling loss factor ηab from plate a to plate b:

Πtrans = ωηabnp(ω)∆ωEmodal. (3.114)

The coupling loss factor is:

ηab =
cgτ

ωd
. (3.115)

The variable d stands for the mean free path and describes how many energy packets in plate a
arrive at the plate junction. It is defined as d = πAa/Ljunct.

The wave-mode duality can be used to divide wave fields in a plate in “coherent” and “in-
coherent” parts. At first this is discussed from the viewpoint of the wave description. A very
large plate is excited by a point force in a bandwidth ∆ω and the point force acts on location
xs. The power is injected into the plate at location xs. The root mean square force of the source
is l and therefore the injected power can be written as:

Πin = l2Y∞ = l2〈G〉. (3.116)
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The variable 〈G〉 was defined before and can be substituted. The mean square velocity at any
point that lies in the distance r from the excitation point can be calculated using the intensity
relation:

ρscg〈v2
D〉2πr = Πin. (3.117)

The power flow starts at point xs and moves radially outward from this point. Eq. (3.117)
is only valid for an infinite plate without damping. In the case where damping is present, an
additional factor that describes the energy decay, has to be included to describe the mean square
velocity:

〈v2
D〉 =

Πin

2πρscgr
e−ωηr/cg . (3.118)

Eq. (3.118) describes the “direct field” of the source and is characterised by an energy decay of
3 dB per double distance. The attenuation that results from the damping linearly increases with
the distance r. If the analysed plate is infinite or η is so large that the vibration of the plate
has stopped before the direct wave arrives at the boundary of the plate then the plate motion
can be described only by the direct field. In the case where the direct field energy is reflected
at boundaries, most of the time coherence between the reflected energy and the direct field is
lost. This is especially true in cases where the boundaries are not perfectly regular or a high
number of reflections exist. The motion resulting from these reflections of energy is termed vr

and describes the “reverberant field”. The power that is dissipated by the reverberant field is
defined as:

ΠR = Πine
−ωηd/2cg = M〈v2

R〉ωη. (3.119)

Reformulating this expression by making use of the assumption that the average distance from
the source to the boundary is half the mean free path d/2 gives:

〈v2
R〉 = Πine

−ωηd/2cg/ωηM . (3.120)

The total mean square velocity can be obtained by summing up the direct and reverberant
velocity parts due to the assumption made before that they are incoherent,

〈v2〉 = 〈v2
D〉+ 〈v2

R〉. (3.121)

It is clear that next to the excitation point the direct field provides the main part to the total
mean square velocity and that at large distances the reverberant field outweighs the direct field
(see Fig. (3.9)). There is also one special distance at which the direct field and the reverberant
field are equal. This distance is termed rD and is given by:

rD =
ωηM

2πρcg
= ηp∆e

λ

π2
. (3.122)

The same example that was analysed by a wave approach, can also be discussed by a modal
description. According to Sec. (3.2) the velocity that results by exciting a plate by a point force
is:

v(x, ω) =
jωL0

M

∑
m

Ψm(x)Ψm(xs)

ω2(1 + iη)− ω2
m

. (3.123)
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Figure 3.9: Direct and reverberant filed of plate [Lyon and DeJong 1995], p. 45

The mode shapes of a simply supported plate can be written as:

Ψm(x)Ψm(xs) =
1

4

2∏
i=1

(
ejkixi − e−jkixi

)(
ejkixsi − e−jkixsi

)
. (3.124)

The product in Eq. (3.124) consists of 16 terms when expanded, where each term describes
a plane wave, having one of the phase vectors that are presented in Fig. (3.10). The inner

Figure 3.10: Construction of four wave vectors corresponding to a single mode [Lyon and DeJong 1995], p.
46

product between the wave vectors and the four position vectors that are graphically presented
in Fig. (3.11) leads to the phase factors. If a point is excited by a force that acts at frequency
ω, only the modes within the bandwidth ∆ω = πωη/2 are excited. The summation is made
over the excited modes in k-space, therefore there are terms with strong fluctuations in phase
and terms that will be combined to small fluctuations in phase. The smaller the vector ~x − ~xs

the smaller the phase variation. Only terms with small phase variation are considered when
describing the “coherent“ part of the summation. By only taking care of the coherent part Eq.
(3.124) becomes:

Ψm(x)Ψm(xs) '
1

4
e−j

~k~r, (3.125)
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with ~r ≡ ~x− ~xs and ~k varying over a whole circle. Assuming that the phase varies less than π/2
between two lattice points the summation over m can be substituted by an integration over the
angles in the k-space:

v(x) =
jωL0

Mκ2c2
l

∑
m

e−jkrcos(Θ)

k4 − k4
p(1− jη)

, (3.126)

where Θ represents the angle between ~r and ~k; kp = ω/κcl. The mass can be replaced by
M = ρAp = ρπ2/∆Ak. By using ∆Ak = k∆k∆Θ, the summation becomes an integral:

v(x) =
−jωL0

4π2ρκ2c2
l

∞∫
0

kdk

k4 − k4
p(1− jη)

2π∫
0

e−jkrcos(Θ)dΘ. (3.127)

The solution to the second integral is 2πJ0(kr), and the final integral that has to be solved is
therefore:

v(x) =
jωL0

π2ρκ2c2
l

∞∫
0

J0(kr)

k4 − k4
p(1− jη)

kdk, (3.128)

which is a standard integral in the tables of Hankel transforms. For η → 0 the result of
Eq. (3.128) is:

v(x) =
L0

8ρκcl
{H(1)

0 (kpr)−H(1)
0 (−jkpr)}. (3.129)

Assuming that kpr > 1 Eq. (3.129) leads to:

Figure 3.11: Configuration of source point and observation point [Lyon and DeJong 1995], p. 46

v(x) =
L0

8ρκcl

√
2

πkpr
{e−jkpr − ejπ/2e−kpr}. (3.130)

The first term describes a cylindrically spreading wave with a reduction of the amplitude by the
factor /

√
r, whereas the second term represents an exponential decay. The vibrational energy
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is represented by the first term, the velocity can be written as:

〈v2
0〉 =

〈L0〉
8ρκcl

1

4πρκclkpr
= Πin/2πρcgr, (3.131)

which is the same result as in the wave analysis for the direct field. To get the incoherent part
the summation in Eq. (3.123) only takes care of the incoherent modes, then the mean square
value can be written as:

ω2L2
0

2M2
· pi

2
ωηns · 1ω2η2 =

L0

2
· 1

ωηM
· pi

2
· nsM =

1

2
L0G/ωηM. (3.132)

This is again the same result as the one obtained in the wave analysis for the reverberant field
(see Eq. (3.120)), assuming that the direct field is not very much dissipated before the first
reflection from a boundary occurs.
It was shown that the description in the wave analysis, where the field contains a direct and a
reverberant part, leads to the same results as in the modal analysis, in which the field is divided
into a coherent and an incoherent part. The duality of the wave analysis and modal analysis
can be very useful because phenomena described by waves can be interpreted by their effects on
modal analysis.
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4
Energy Sharing by Coupled Systems

In the following chapter the energy exchange of coupled resonators is discussed. At first two
simple linear resonators are coupled and the energy flow between these resonators is discussed.
Then the systems are extended to multi-modal systems and again the energy exchange between
the systems is analysed. By discussing the energy flow between resonators some basic theorems
of SEA can be found.
In SEA systems under test are divided into subsystems and analysed in terms of dissipated and
coupled energies. In this chapter the main principles of the coupling of subsystems are derived,
based on the analysis of coupled resonators. The basic theorems found by these discussions are
also true in real world applications of SEA and therefore it is important to know these theorems.

4.1 Energy Sharing Among Resonators

The energy interaction of a system that couples two linear resonators with conservative elements
is discussed (see Fig. (4.1)). Based on the results of this simple system, later on more complex

Figure 4.1: Two coupled, linear resonators [Lyon and DeJong 1995], p. 51

systems can be studied and analysed. To calculate the equation of motion for mass M1 all forces
that operate on this mass must be taken in account. Also the forces that act on M1 because of
a motion of mass M2 must be included, in mathematics this is done by Langrange operators.
The kinetic energy is given by:

KE =
1

2
M1ẏ

2
1 +

1

2
M2ẏ

2
2 +

1

8
Mc(ẏ1 + ẏ2)2 (4.1)
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and the potential energy of the system can be written as:

PE =
1

2
K1y

2
1 +

1

2
K2y

2
2 +

1

2
Kc(y2 − y1)2. (4.2)

If there are no velocity dependent forces, the equations of motion are:

d

dt

∂KE

∂ẏi
− ∂PE

∂ẏi
= li. (4.3)

Eq. (4.1) and Eq. (4.2) are introduced in Eq. (4.3), the damping force Rẏ and the gyroscopic
coupling force Gẏ are included in the independent equation of motion, resulting in:

(M1 +
1

4
Mc)ÿ1 +R1ẏ1 + (K1 +Kc)y1 = l1 +Kcy2 +Gẏ2 −

1

4
Mcÿ2 (4.4)

(M2 +
1

4
Mc)ÿ2 +R2ẏ2 + (K2 +Kc)y2 = l2 +Kcy1 +Gẏ1 −

1

4
Mcÿ1. (4.5)

These equations show that forces in one system are caused due to motion in the other system. In
real systems also uncoupled structures exist. They can be described by Eq. (4.4) and Eq. (4.5),
if the terms y1, ẏ1 and ÿ1 are set to 0 in Eq. (4.5) and the terms y2, ẏ2 and ÿ2 are set to 0 in
Eq. (4.4). This means that system (2) is clamped5 in Eq. (4.4) and system (1) is clamped in
Eq. (4.5). Eq. (4.4) and Eq. (4.5) can be made more symmetric by introducing new terms:

ÿ1 + ∆1ẏ1 + ω2
1y1 +

1

λ
[µÿ2 − γẏ2 − κy2] = L1 (4.6)

ÿ2 + ∆2ẏ2 + ω2
2y2 + λ[µÿ1 − γẏ1 − κy1] = L2, (4.7)

with

∆i = Ri/(Mi +Mc/4),

ω2
i = (Ki +Kc)/(Mi +Mc/4),

µ = (Mc/4)(M1 +Mc/4)1/2(M2 +Mc/4)−1/2,

γ = G/(M1 +Mc/4)1/2(M2 +Mc/4)1/2,

κ = Kc/(M1 +Mc/4)1/2(M2 +Mc/4)1/2,

λ = (M1 +Mc/4)1/2(M2 +Mc/4)−1/2

and

Li = li/(Mi +Mc/4).

If the parameters are set as ∆1 = ∆2 = ∆, ω1 = ω2 = ω, λ = 1 and µ = γ = 0, the system
described contains of two identical resonators that are only stiffness coupled. Then Eq. (4.6) is
added to and subtracted from Eq. (4.7). This procedure leads to:

z̈1 + ∆ż1Ω2
1z1 = g1 (4.8)

5 Here clamped means that the response variables of a system are set to 0.
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and

z̈2 + ∆ż2Ω2
2z2 = g2, (4.9)

with z1 = y1 + y2, z2 = y1− y2, g1 = L1 +L2, g2 = L1−L2, Ω2
1 = ω2

0 + κ and Ω2
2 = ω2

0 − κ. The
free vibration response for each of the masses in the case where no damping is present, obeys
the following equation:

y(t) = Asin(Ω1t+ Φ2) +Bsin(Ω2t+ Φ2). (4.10)

If A and B have nearly the same values then motion of each of the masses is described by:

y1(t) ' Csin
( κ
ω0

+ Θa

)
sin(ω0t+ Θb). (4.11)

This means that the oscillation is modulated by an envelope that changes with κ/ω0. This is
well known as beating phenomenon, which is one of the most interesting features of coupled res-
onators. By introducing a damping ∆, a decaying factor e−∆t/2 has to be included in Eq. (4.11).
In the case of a strong damping compared to the coupling the energy sharing will not take place,
because the vibrational energy will be dissipated before the beating oscillations can start. In
case of a light damping compared to coupling, the beating oscillations and therefore the energy
sharing exist. Exciting the resonators with white noise lead to similar conclusions.
In Eq. (4.8) and Eq. (4.9) l2 is assumed to be 0 to discuss the power obtained in the indirectly
excited resonator. Inserting l2 = 0 it is found that g1 = g2 and that y1 and y2 are identical,
noting that their responses are shifted as presented in Fig. (4.2). Three cases are presented:

• Damping strong compared to coupling

• Damping equal coupling

• Coupling stronger than damping

Assuming that there is no coupling means that z1 = z2 and ẏ2 = 1
2(ż1− ż2) = 0. If the damping

is strong compared to the coupling, i.e. κ/ω0 < ∆, then the difference between Sż1 and Sż2 is
nearly the same as the spectrum of ẏ2 (see Fig. (4.2.a)). Although y2 is weak in this scenario,
its spectrum has a slight double peak that stands for a little beating effect. If the coupling is
nearly equal the damping then 〈ẏ2

2〉 is increasing. This leads to a more distinct double peak
and a stronger beating. It can be seen in Fig. (4.2.b) that the spectra Sż1 and Sż2 are moved
further apart and that their difference is bigger as in the first case, resulting in the mentioned
increase in the spectrum of ẏ2. In the third case shown in Fig. (4.2.c) the coupling is much
stronger than the damping, i. e. κ/ω0 � ∆. This means that ẏ1 and ẏ2 do not share common
frequencies any longer and become statistically independent. The power that is given from the
white noise source is dissipated to one half in resonator “1” and to the other half in the second
resonator, i.e. 〈ẏ2

1〉 = 〈ẏ2
2〉 = 〈ż2

1〉. In this case the beating activities will be quite strong and
the energy flows from one resonator to the other and vice versa.
In the experiment discussed before, the excitation force l2 was assumed to be 0. Now independent
white noise sources l1 and l2 are applied to the system and the resulting behaviour of the system
is discussed in the following section. Introducing the power 〈l1ẏ1〉 that is provided by l1 in
Eq. (4.4) leads to:

〈l1ẏ1〉 = (M1+
1

4
Mc)〈ÿ1ẏ1〉+R1〈ẏ2

1〉+(K1+Kc)〈y1ẏ1〉−Kc〈y2ẏ1〉−G〈ẏ2ẏ1〉+
1

4
Mc〈ÿ2ẏ1〉. (4.12)
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Figure 4.2: Spectral density of indirectly excited resonator velocity as a function of the degree of coupling
[Lyon and DeJong 1995], p. 54

If stationary processes are assumed then 〈dẏ2
1/dt〉 and 〈dy2

1/dt〉 are equal to 0. By inserting this
in Eq. (4.12), the equation simplifies to:

〈l1ẏ1〉 = R1〈ẏ2
1〉 −Kc〈y2ẏ1〉 −G〈ẏ2ẏ1〉+

1

4
Mc〈ÿ2ẏ1〉. (4.13)

The first term on the right hand side stands for the energy that is dissipated by the damper
and all the other terms on the right hand side stand for power flow into coupling elements. The
same calculations as for source l1 can be done for l2 resulting in the final equation:

〈l2ẏ2〉 = R2〈ẏ2
2〉 −Kc〈y1ẏ2〉 −G〈ẏ1ẏ2〉+

1

4
Mc〈ÿ1ẏ2〉. (4.14)

It is supposed that〈 d
dt
y1y2

〉
= 〈ẏ1y2〉+ 〈ẏ2y1〉 = 0

and 〈 d
dt
ẏ1ẏ2

〉
= 〈ÿ1ẏ2〉+ 〈ÿ2ẏ1〉 = 0.

Using these assumptions by inserting them in Eq. (4.13) and Eq. (4.14) and finally adding these
equations up, gives:

〈l1ẏ1〉+ 〈l2ẏ2〉 = R1〈ẏ2
1〉+R2〈ẏ2

2〉. (4.15)
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This means that the injected power is only dissipated by the damping elements and that the
coupling elements can be said to be non-dissipative, if the presented simplifications are valid for
stationary processes.
The power flow from resonator 1 to resonator 2 is described by the last three terms on the right
hand side of Eq. (4.13):

Π12 = −Kc〈y2ẏ1〉 −G〈ẏ2ẏ1〉+
1

4
Mc〈ÿ2ẏ1〉. (4.16)

Calculating these averages is very exhausting and as it is done in the literature [Lyon and DeJong
1995], it is not executed here but the result is discussed. The evaluation of these averages is
achieved in time or frequency domain resulting in:

Π12 = A
[ πSl1

∆1(M1 + 1
4Mc)

− πSl2
∆2(M2 + 1

4Mc)

]
, (4.17)

where A can be looked up in the literature [Lyon and DeJong 1995], too. Assuming that
y2 = ẏ2 = 0, the second term on the rhs of Eq. (4.17) vanishes and the first term defines the
uncoupled or blocked energy of resonator 1:

E
(b)
1 ≡ πSl1(ω)

∆1(M1 + 1
4Mc)

=
πSl1(f)

4ω1η1(M1 + 1
4Mc)

=
(
M1 +

1

4
Mc

)
〈ẏ2

1〉. (4.18)

In the same way E
(b)
2 can be defined, if y1 = ẏ1 = 0:

E
(b)
2 ≡ πSl2(ω)

∆2(M2 + 1
4Mc)

=
(
M2 +

1

4
Mc

)
〈ẏ2

2〉. (4.19)

Eq. (4.17) describes the power flow from resonator 1 to resonator 2 and can be written in

the form Π12 = A(E
(b)
1 − E

(b)
2 ). Using this form of describing the power flow, some important

remarks can be made:

(1) The main part of the power flow comes from the resonant interaction between the two
resonators. If the resonance frequencies ω1 and ω2 are within a resonant bandwidth of the other
resonance frequency A is large, otherwise it is small.

(2) The power flow is directly proportional to the difference of the blocked energies of the
resonators.

(3) The power always flows from the resonator with greater energy to the one with lesser energy
due to the fact that A is positive definite.

(4) Because of the symmetry of A in the system parameters the power flow is reciprocal. This
means that the power flow from resonator 1 to resonator 2 is equal to the power flow from res-
onator 2 to resonator 1, if an equality in the difference of the resonator energies in each direction
is given.

The power flow can also be expressed by resonator energies, showing that the difference in
kinetic, potential or total energy of the resonators is proportional to the power flow. Therefore
the power flow can be written as:

Π12 = B(E1 − E2), (4.20)
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where Ei stands for the average energy of the resonator i and B is a proportionality constant
defined in the literature [Lyon and DeJong 1995] and therefore not given here. Assuming that
resonator 2 is only indirectly excited, this means that Sl2 = 0. The power that is flown from
resonator 1 to resonator 2 has to be equal the dissipated power in resonator 2 in this case:
Π2, diss = Π12 = ∆2E2 = B(E1 − E2) which leads to:

E1

E2
=

B
∆2 + B

. (4.21)

This relation states that the largest energy value in system 2 is reached when the coupling is
strong compared to the damping. In this case E2 ' E1. Now the additional remarks to the
presented ones can be made:

(5) A proportionality between the vibrational energies of the system and the power flow ex-
ists. The factor of proportionality is B.

(6) Because of the symmetry in the parameters of the system and the positive definiteness
of the proportionality factor, the power flows from the resonator that contains more energy to
the one with less energy. Furthermore the system is said to be reciprocal.

(7) If one resonator is directly excited, whereas the other is only indirectly excited, the max-
imal amount of energy in the indirectly excited resonator is the energy of the directly excited
resonator.

These seven statements are the basis of energy flow studies in acoustical and mechanical systems.
The power flow between resonators as discussed, is the basis of the description of more complex
systems.

4.2 Energy Exchange in Multi-Degree-of-Freedom Systems

The development of a theory of multi-modal interactions is based on the results of Sec. (3.2),
in which distributed systems were discussed and the results of Sec. (4.1) in which the energy
sharing between two resonators was derived.
In this section two subsystems are connected and their response to the direct excitation pi and
the interaction “forces”, as shown in Fig. (4.3) is analysed. Assuming that one subsystem is

Figure 4.3: Analysis of coupled multi-DOF system (a) systems of interest; (b) system 2 is blocked; (c) system
1 is blocked [Lyon and DeJong 1995], p. 59

blocked, the other one vibrates because of the excitation pi. This situation leads to the same
results as presented in Sec. (3.2), where the equation of motion was:

ÿ
(b)
i + (ri/ρi)ẏ

(b)
i + ρ−1

i Λiy
(b)
i = pi/ρi, i = 1, 2. (4.22)
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The eigenfunctions and eigenvalues of the operator ρ−1
i Λi are related through (as found in

Sec. (3.2)):

ρ−1
i ΛiΨiα = ω2

iαΨiα. (4.23)

Using the orthogonality and normalisation leads to:

〈ΨiαΨiβ〉ρi = δα, β. (4.24)

The condition for blocking subsystem j if subsystem i is analysed, i.e. yj ≡ 0, is part of the
boundary conditions fulfilled for Ψiα. It is assumed that the modal excitation of the system is
white, according to the fact that the spectral densities are flat over the range of frequency ∆ω.
The modal density in this finite frequency band for each subsystem is termed as ni(ω) and the
modes of the ith subsystem are given by Ni = ni∆ω. The modes in the cases of coupled and
uncoupled subsystems are shown in Fig. (4.4), where each mode group stands for a subsystem
model. This model has some interesting properties that are important by applying SEA to real
world problems:

Figure 4.4: Model coupling in connected subsystems, (a) modal groups with blocked subsystems; (b) modal
pairs with connected subsystems [Lyon and DeJong 1995], p. 60

(1) The resonance frequency ωiα of each mode of a subsystem is supposed to be equally probable
over the frequency interval ∆ω. Therefore the subsystems belong to a population of systems
that have in general similar physical features but differ enough so that their parameters can be
said to be randomly distributed. For example acoustical spaces will have fluctuations in their
modal parameters, especially in higher frequency regions.

(2) All the modes of a subsystem are supposed to have the same energy. Moreover the as-
sumption is made that the modal amplitudes Yiα(t) =

∫
(ρiyiΨiα/M)dxi are incoherent, i.e.

〈YiαYiβ〉t = δα, β〈Y2
iα〉. (4.25)

This means that the mode groups should be selected in such a way that this assumption is
true. Furthermore this statement says that the modal excitation functions Li should be taken
from random populations of functions with particular similarities, e.g. equal frequency and wave
number, but are however incoherent.

(3) For reasons of simplicity the damping of each mode in a subsystem is supposed to be
the same. This assumption is not essential but simplifies the discussions and is quite true for
complex systems.

These three remarks are the basis for the term “statistical” in SEA.
So far only the blocked system was discussed. The system is now unblocked and the equations
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of motion become:

ÿi(ri/ρi)ẏi +Λiyi =
[
pi +µij(xi, xj)ÿj +(−)jγij(xi, xj)ẏj +κijyj

]
/ρi [i 6= j; i, j = 1, 2]. (4.26)

Expanding these two equations by using the eigenfunctions Ψ1α(x1) and Ψ2σ(x2) leads to:

M1

[
Ÿα + ∆1Ẏα + ω2

ωYα
]

= Lα +
∑
σ

[
µασŸσ + γασẎσ + κασYσ

]
(4.27)

M2

[
Ÿσ + ∆2Ẏσ + ω2

σYσ
]

= Lσ +
∑
α

[
µσαŸα + γσαẎα + κσαYα

]
. (4.28)

The indices α, β, ... are used for subsystem 1 and σ, τ, ... for subsystem 2. The mass of subsystem
i is termed Mi, ∆i = ri/ρi and µασ and µσα are the coupling factors. The coupling is termed
conservative if the following conditions are fulfilled: µασ = µσα, γασ = γσα and κασ = κσα.
In Fig. (4.4.b) two coupled subsystems are shown, where the connections show the energy flow
due to the coupling. If the subsystems are excited by white noise, the modes α of subsystem 1
and σ of subsystem 2 have the energies Eα and Eσ. Previous findings showed that all modes of
a subsystem have the same modal energies, therefore Eα = E1 = const. and Eσ = E2 = const..
According to that, the inter-modal power flow is (see Eq. (4.20)):

Πασ = 〈Bασ〉ωαω0(E1 − E2), (4.29)

with (not derived here)

< Bασ >ωαω0=
π

2

∆1∆2

∆ω
〈λ〉α, σ (4.30)

and

λ ≡ [µ2ω2 + (γ2 + 2µκ) + κ2/ω2]/∆1∆2. (4.31)

All modes N1 of subsystem 1 provide a power flow to mode σ of subsystem 2, that is:

Π1, α = 〈Bασ〉N1(E1 − E2). (4.32)

The total power flow from subsystem 1 to subsystem 2 is obtained by summing over all modes
of subsystem 2:

Π1, 2 = 〈Bασ〉N1N2(E1 − E2). (4.33)

For deriving the coupling loss factors η12 and η21 the total energy of the subsystems are termed
E1,tot and E2,tot, where E1 = E1,tot/N1 and E2 = E2,tot/N2. Then the total power flow from
subsystem 1 to subsystem 2 expressed in these terms can be written as:

Π12 = 〈Bα, σ〉N1N2

[E1,tot

N1
− E2,tot

N2

]
≡ ωη12

[
E1,tot −

N1

N2
E2,tot

]
, (4.34)

with η12 ≡ 〈Bασ〉N2/ω. The power that is lost by subsystem 1 because of coupling, is ωη12E1,tot

and the power that is fed from subsystem 2 with energy E2,tot into subsystem 1, is ωη21E2,tot.
In the equation

N1η12 = N2η21 (4.35)

SEA for Room Acoustics – 39 –



4 Energy Sharing by Coupled Systems

the number of modes Ni can be replaced by the modal densities ni∆ω. This equation can be
used to calculate an unknown loss factor from a known one.
The system represented in Fig. (4.4.b) is shown in a simpler version in Fig. (4.5). From this

Figure 4.5: Energy transfer and storage in the case of two connected subsystems [Lyon and DeJong 1995],
p. 64

figure the power flow equations for the whole system can be derived:

Π1,in = Π1,diss + Π12 = ω
[
η1E1,tot + η12E1,tot − η21E2,tot

]
(4.36)

Π2,in = Π2,diss + Π21 = ω
[
η2E2,tot + η21E2,tot − η12E1,tot

]
. (4.37)

If only system 1 is excited by an external source, Π2,in = 0 and this leads to:

E2,tot

E1,tot
=

η12

η2 + η21
=
N2

N1

η21

η2 + η21
. (4.38)

If both subsystems are excited by external sources, the total power of the subsystems is:

E1,tot =
{

Π1,in(η2 + η21) + Π2,inη21

}
/ωD (4.39)

E2,tot =
{

Π2,in(η1 + η12) + Π1,inη12

}
/ωD (4.40)

where D is introduced as

D = (η1 + η12)(η2 + η21)− η12η21. (4.41)

The coupling loss factor defines the inter-modal forces at the junctions between subsystems. It
is an average not only over frequency but also over the modes of the systems that interact with
each other.
At the end of this section it should be mentioned that in complex systems both local and global
modes exist. If two resonators are connected global modes effect motions in both resonators,
whereas local modes only effect substantial motion in one of the subsystems. Global modes are
responsible for a significant energy flow between the subsystems.
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4.3 Reciprocity and Energy Exchange in Wave Bearing Systems

In systems that contain linear, passive and bilateral elements, a general principle that is useful
to describe wave interactions is reciprocity. For the following definitions it is assumed that the
system is divided into a large number of tiny masses, springs and dampers:

(a) linear: This means that the force that acts on an element is directly proportional to the
mechanical response of the element.

(b) passive: The term passive states that the only operating sources are those that are ex-
plicitly defined as sources in the equations of motion. Energy cannot be produced by elements
of the system.

(c) bilateral: Forces are transmitted from one neighbour to the next one. The roles between the
neighbours are reversed because of force interactions. These reversed roles will lead to an exact
reversal of the relative motions.

In Fig. (4.6) a system is presented in which the principle of reciprocity can be applied. At
terminal pair 1 of a reciprocal system a drop l is produced and the flow U due to this drop is
measured through a wire that connects terminal pair 2. In Fig. (4.6.b) the drop p′ is generated
at terminal pair 2, resulting in a short circuit flow v′ at terminal pair 1. In this scenario the

Figure 4.6: Reciprocal system A [Lyon and DeJong 1995], p. 70

reciprocity principle gives:

v′

p′
=
U

l
. (4.42)

The only limitation when using this principle is that p′, U , and l, v′ have to be conjugate
variables. This means that∣∣∣v′

p′

∣∣∣ =
∣∣∣U
l

∣∣∣. (4.43)

If p′ and l are noise signals that have the same spectral shapes, it follows that:

〈v′2〉
〈p′2〉

=
〈U2〉
〈l2〉

. (4.44)

For the systems in Fig. (4.7) and Fig. (4.8) the reciprocity statements are:

〈p2〉
〈v2〉

=
〈l′2〉
〈U ′2〉

(4.45)

SEA for Room Acoustics – 41 –



4 Energy Sharing by Coupled Systems

and

〈U2〉
〈v2〉

=
〈l′2〉
〈p′2〉

. (4.46)

Figure 4.7: Reciprocal system B [Lyon and DeJong 1995], p. 71

Figure 4.8: Reciprocal system C [Lyon and DeJong 1995], p. 71

The differences between Fig. (4.6), Fig. (4.7) and Fig. (4.8) are the used variables. In Fig. (4.6)
a drop force is applied at terminal pair 1 and a flow measured at terminal pair 2. In Fig. (4.7)
a flow is generated at terminal pair 1 and a drop measured at terminal pair 2. In Fig. (4.8.a) a
flow is applied at terminal pair 1 and a drop measured at terminal pair 2, whereas in Fig. (4.8.b)
a drop is generated at terminal pair 2 and a flow measured at terminal pair 1.
The force that arises on a point clamp at the edge of the plate because of the vibration of the
plate is discussed as an example of reciprocity. A band limited noise source l1(t) acts on a point
xs on the surface of the plate and the dynamic load resulting to this excitation on the clamp is
termed lB, as shown in Fig. (4.9). The power 〈l21〉G1,∞ is injected into the plate because of the

Figure 4.9: Plate driven by a point load noise source [Lyon and DeJong 1995], p. 71
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load l1. This power leads to the following mean square velocity 〈v2
1〉 in the plate:

〈v2
1〉 = α〈l21〉G1,∞ (4.47)

where α relates the mean square velocity to the input power. Because of the linearity of the
system it can be written:

〈l2B〉 = Θ〈v2
1〉 (4.48)

where Θ is the unknown parameter. If the clamp is driven with a noise velocity v′B(t) then this
procedure describes the reciprocal situation. It has to be noted that v′B(t) must have the same
band limited spectrum that l1(t) has. The power produced by v′B(t) is 〈v‘2

B 〉R1 and the resulting
plate velocity is:

〈v‘2
1 〉 = α〈v‘2

B 〉R1. (4.49)

The system in Fig. (4.9) has the same structure as the one in Fig. (4.8) and therefore with the
help of Eq. (4.46) the following can be written:

〈l2B〉/〈l2〉 = 〈v‘2
1 〉/〈v‘2

B 〉, (4.50)

and Θ becomes:

Θ = R1/G1,∞. (4.51)

This example is extended by introducing a second plate that is connected to plate 1 at the edge
point that was analysed before, as seen in Fig. (4.10). It is assumed that they are connected

Figure 4.10: Two plates connected at one point along the edge [Lyon and DeJong 1995], p. 72

in a transverse way and that no moments are transmitted, to keep the problem simple. The
mean square velocity in plate 1 is given by 〈v2

1〉 and a result of the band limited noise l1(t). This
motion of plate 1 leads to a velocity in plate 2 〈v2

2〉 = Θ〈v2
1〉. This can be expressed in the form:

〈v2
2〉 = Γ〈v2

1〉 = Γβ〈l21〉G1,∞. (4.52)

The load l′2(t) that has the same spectrum as l1 acts at the position where the velocity v2 due
to the force l1 was measured. A part of the power that results from l2 will be dissipated and
another part, 〈l‘22 〉G2,∞ will be injected into plate 1 through the junction and is termed Π′12. By
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using the coupling loss factors defined earlier the following can be written:

Π′12 = 〈l‘22 〉G2,∞η12/(η21 + η2). (4.53)

Because of the power that is transmitted into plate 1 through the junction, a mean square
velocity results in plate 1:

〈v‘2
1 〉 = Π′12β. (4.54)

Using the reciprocity condition that 〈l21〉/〈l‘22 〉 = 〈v2
2〉/〈v‘2

1 〉, the unknown factor Γ becomes:

Γ =
G2,∞
G1,∞

η21

η2 + η21
=
〈v2

2〉
〈v2

1〉
. (4.55)

In finite systems it can be used that G2,∞ = (π/2)(n2/M2) and G1,∞ = (π/2)(n1/M1). Substi-
tuting this in the equation for Γ leads to:

M2〈v2
2〉

n2
=
M1〈v2

1〉
n1

η21

η2 + η21
. (4.56)

This is another representation of Eq. (4.38), which states power flow relations of Statistical
Energy Analysis.
The power flow between plate 1 and plate 2 can also be described in terms of a blocked force as
used in Eq. (4.48) and (4.50), respectively (4.51). Then the system shown in Fig. (4.11a) must
be divided in parts as in Fig. (4.11b). The blocked force lB minus the force resulting due to the

Figure 4.11: Superposition used to analyse 2-plate system, a) actual system; b) system divided into 2 idealised
problems [Lyon and DeJong 1995], p. 74

velocity, (li = vZi) gives the actual force that the junction applies to plate 1. Upward forces
and velocities are positive, whereas downward forces and velocities are negative. The velocity
at the boundary will create an upward force on the edge of plate 1 and also on plate 2 there
will be an upward force because of the motion v and therefore a downward reaction force on the
edge of plate 1. This leads to:

l = −vZ2 = lB + vZ1 (4.57)

and according to that

〈l2B〉 = 〈v2〉|Z1 + Z2|2. (4.58)
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The relation between 〈l2B〉 and 〈v2
1〉 is given through Eq. (4.48). The power into plate 2 is defined

as 〈v2〉R2 and the velocity in plate 2 is related to 〈v2〉 by the loss factor of plate 2:

〈v2
2〉 = 〈v2〉R2/ωM2η2. (4.59)

Combining Eq. (4.48, 4.50, 4.51, 4.57, 4.58, 4.59) leads to:

M2〈v2
2〉

n2
=
M1〈v2

1〉
n1

{ 2

π

R1R2

|Z1 + Z2|2
} 1

ωη2n2
. (4.60)

This can be seen as the multi-dof equivalent of Eq. (4.17). The power that is injected into
system 1 is given by M〈v2

1〉 and the coefficient in the above relation that describes the power
flow, can be called the “coupling loss factor” for the case of uncoupled system energies. It is
defined as:

α12 =
2

πωn1

R1R2

|Z1 + Z2|2
. (4.61)

The reciprocity condition that is fulfilled by η12 is also valid for α12, this means that:

n1α12 = n2α21. (4.62)

Since there is a relation between α12 and η12 the coupling loss factor can be calculated by
junction impedances or averages over impedances. The relation between α12 and η12 depends
on the system that is analysed. The impedances Z1 and Z2 can be calculated based on a wave
or modal analysis. In some cases they can be easily evaluated by a wave model and therefore
wave analysis is important in SEA for the evaluation of junction impedances.
The coupling loss factor can be calculated relatively easy, if systems are connected through a
line in the two dimensional case or through a surface in a three dimensional case. The constraint
is that the dimensions of the line or the surface must be large in comparison to the free wave
length of the system. As it can be seen in Fig. (4.12), waves that have the intensity I0 in
the interval dΩ are partly transmitted and partly reflected at the junction. The transmission

Figure 4.12: Transmission of power between two systems through a line junction [Lyon and DeJong 1995],
p. 72
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coefficient τ(Ω) determines the ratio of the transmitted to the incident power. It is a function
of the angle between the junction line or surface and the incident waves. In the same way as
presented in Eq. (3.113), the transmitted power can be calculated by:

Π12 =

∫
Ωinc

τ(Ω)Lp(Ω)d(∆I). (4.63)

In this equation d(∆I) is given by:

d(∆I) = ∆EcgD(Ω)dΩ/Ωtot, (4.64)

with d(∆I) being the intensity of wave energy, D(Ω) stands for a weighting function, dΩ de-
scribes the interval of directions of the waves and Ωtot is the total range of Ω. In Eq. (4.63) Lp

is a projection of the boundary length or area for the waves that propagate in the direction Ω,
and Ωinc is the range of angles of the waves reaching the boundary. The energy that leads to
the transmitted power is A1∆E1 with A1 defining the area of system 1. Therefore the coupling
loss factor is:

η12 =
Π12

ωA1∆E1
=

cg

ωA1Ωtrans

∫
Ωinc

τ(Ω)Lp(Ω)D(Ω)dΩ. (4.65)

As an example a two dimensional isotropic system is analysed. In this case Ljunct is the length
of the transmitting boundary (straight line). The variable Ω defines the angle of the incident
waves. With these assumptions D(Ω) = 1, Ωinc = π and Ωtran = π. The coupling loss factor
becomes:

η12 =
cgLjunct

πωA1

π/2∫
−π/2

τ(Ω)cosΩdΩ =
cgLjunct

ωA1
〈τ(Ω)cosΩ〉Ωinc . (4.66)

To calculate the coupling loss factor with the presented formula the transmissibility must be
known. This value can be either calculated or is even available in the literature. In a three
dimensional case, e.g. in acoustics, the coupling loss factor becomes:

η12 =
cAjunct

4ωV1
〈τ(Ω)cosΘ〉Ωinc , (4.67)

with c the speed of sound, V1 the room volume, Ajunct the area of the boundary and Θ the angle
between the panel and the wave vector.
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5
The Estimation of Response Statistics in SEA

5.1 Mean Value Estimates of Dynamical Response

Using average energy quantities can be very advantageous because sound, vibration and other
resonant systems can be analysed by the same variables. It has to be kept in mind that all those
variables are averages and that the actual energy of the system that is analysed will not be
exactly equal the averaged energy that was calculated based on an ensemble of similar systems.
The difference between the actual system and the average system can be expressed by defining
a standard deviation (σ) or variance (σ2) of the system energy. If σ is small that means that
the actual system is described quite well by the mean value but if σ is big, the probability that
one realisation will have a response that is close to the mean is small. In this case a confidence
interval or confidence coefficient is used that defines an interval of response amplitudes that will
be reached by an actual realisation with some probability.

5.1.1 Single Mode Response

System 1 is assumed to be a multi-modal system and the force that acts on the system is
supposed to be a noise force of bandwidth ∆ω. The total energy of that system is E1,tot and
the system has N1 modes in the bandwidth of the source. For system 2 the assumption is made
that it has only one mode with mode shape Ψ2(x). By using the coupling loss factor η12 that
was defined in chapter 3, the energy of the mode of system 2 can be written as:

E2 = E1
η21

η2 + η21
. (5.1)

The actual response of system two at location x2 should be found, assuming that the coupling
loss factor has been calculated yet. With the help of Eq. (3.59) it can be written that:

y2(x, t) = Y2(t)Ψ2(x). (5.2)

The general result for the energy E2 is:

E2 =

∫
dxρ〈ẏ2〉t = M2〈Ẏ2

2
(t)〉t = M2ω

2
2〈Y2

2 (t)〉t. (5.3)

In Eq. (5.3) M2 stands for the mass of system 2 and ω2 stands for the resonance frequency of
system 2 but ω2 can be replaced by ω because it is assumed that ω2 is in ∆ω. So the average
response becomes:

〈y2
2(x, t)〉 =

E2

ω2M2
Ψ2

2(x) =
[E1,tot

N1

η21

η2 + η21

] 1

ω2M2
Ψ2

2(x). (5.4)
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This last equation shows that even if a statistical model is used, the spatial distribution of the
response can be calculated. By normalising the mode shape, it is still valid that

〈y2
2〉ρ, t = E2/ω

2M2. (5.5)

5.1.2 Multi-Modal Response

In the case in that several modes N2 exist in system 2 due to the indirect excitation of system 1
in the band ∆ω the energy of system 2 is:

E2,tot

N2
≡ E2 =

E1,tot

N1

η21

η2 + η21
. (5.6)

The mean square response of system 2 due to this energy is given by:

〈y2
2〉ρ, t = E2,tot/ω

2M2. (5.7)

In the case of a clamped free beam the response estimate would be a poor estimate, because the
actual value of 〈y2

2〉t would only be equivalent to 〈y2
2〉ρ, t at a finite number of points. At most

of the points 〈y2
2〉t would oscillate around the estimate. Therefore the variance of the response

should be estimated in the described example to analyse the system properly.
In Sec. (4.2) a model for system interaction was derived. The following three statements can be
made for the response of system 2:

(1) Based on Eq. (5.2) the response of the multi-modal system can be written as:

y2(x, t) =
∑
σ

Yσ(t)Ψσ(x). (5.8)

(2) The incoherence of the modal response amplitudes leads to:

〈Yσ(t)Yτ (t)〉t = 〈Y2
σ(t)〉tδσ, τ . (5.9)

(3) All the modes of system 2 have the same energy:

〈Y2
σ(t)〉t = 〈Y2

τ (t)〉t = E/ω2M2. (5.10)

The values that are valid for σ are defined by the modes of system 2 in the frequency band
∆ω. This result can be used for describing the multi-modal temporal mean square response of
a rectangular plate.

5.1.3 Wave Estimates

The most important use of wave analysis in SEA is the calculation of average impedance func-
tions for deriving coupling loss factors at the boundaries of a system. As an example the system
of Fig. (5.1) is analysed, where a beam is cantilevered to a plate.
The displacement along the connection of the systems will be very small, because the systems
have very high impedances. But there will be a transmission of power due to torques and ro-
tational motion of the junction. For the determination of the coupling loss factor, the power
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Figure 5.1: Beam plate system, beam indirectly excited [Lyon and DeJong 1995], p. 87

transmission between the systems must be evaluated. If the rotation force of the contact line
is left out (see Fig. (5.1)) they are uncoupled. Then the modes of the beam are known, in
this case the beam has clamped-free boundary conditions. To evaluate the modes of the plate
a finite element model would be needed because of the complicated boundary conditions of the
plate. Applying the reciprocity principle for coupling loss factors and by assuming that the
plate is infinite, the problem can be solved. The reciprocity of the coupling loss factor allows to
determine the plate to beam coupling loss factor ηpb, if the beam to plate coupling loss factor
ηbp is known:

Npηpb = Nbηbp. (5.11)

The moment impedance that looks into the plate can be replaced by the one that belongs to an
infinite plate. The infinite system moment impedance is known and equals the averaged moment
impedance, as shown in Sec. (3.2) and Sec. (3.3). The advantage of this procedure is that the
energy of the plate that returns to the junction is omitted.
In Sec. (4.3) the power flow between systems was described by using the boundary impedances,
resulting in:

Πbp = ωαbpE
(b)
b,tot, (5.12)
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with

ωαbp =
2

πnb

RbRp

|Zb + Zp|2
. (5.13)

In Eq. (4.34) a second version for describing the transmitted power from subsystem 1 into
subsystem 2 was found that can be adapted here to:

Πbp = ωηbp

(
Eb,tot −

Nb

Np
Ep,tot

)
. (5.14)

In general αbp in Eq. (5.12) is not the same as ηbp in Eq. (5.14). By expanding the receiving
system (in this case the plate), and not changing the loss factor ηp, the term NbEp,tot/Np will
vanish. Introducing the infinite plate impedances in Eq. (5.12) and using the last statements,
leads to:

αbp =
2

πωnb

RbR
∞
p

|Zb + Z∞p |2
. (5.15)

The junction does not influence the input power to the system:

Π1,in = E
(b)
1,tot∆1 = E1,tot∆1 + ωα12E

(b)
1,tot (5.16)

and

ωηbpEb,tot = ωηbp

[
1−

ωαbp

∆b

]
E

(b)
b,tot = ωαbpE

(b)
b,tot. (5.17)

Accordingly, ηbp and αbp can be related:

ηbp = αbp(1− ωαbp/∆b)−1. (5.18)

For a beam that has only one single mode ∆b = Rb/Mb and averaging αbp over ∆ω leads to:

〈αbp〉∆ω =
2

πω

RbR
∞
p

(Rb +Rp)2
· π

2

Rb +Rp

Mb
. (5.19)

Expressing ηbp in Eq. (5.18) in terms of the averaged αbp of Eq. (5.19) leads to:

ωηbp =
R∞p
Mb

. (5.20)

Discussing a beam that has very dense modes, i.e. nb∆b � 1, then the beam looks infinite and
it can be written that:

ωαbp

∆b
=

2

π

R∞b +R∞p
|Z∞b + Z∞p |2

1

nb∆b
� 1. (5.21)

Therefore, the term in brackets in Eq. (5.18) is nearly 1 and this means that ηbp → αbp:

ηbp → αbp =
2

πωnb

R∞b +R∞p
|Z∞b + Z∞p |2

. (5.22)

ηbp can be described in terms of a mode-mode coupling coefficient 〈Bασ〉:

ωηbp = 〈Bbp〉np∆ω. (5.23)
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The value of 〈Bbp〉 is indirectly proportional to the plate area of the receiving system whereas
np is directly proportional to the plate area. This means that the extension of the receiving
system does not change the value of ηbp but it affects the value of αbp. This leads to the fact
that applying Eq. (5.18) is only correct, if the parameters of the receiving systems are infinite
but Eq. (5.15) is correct in any situation.
In the system shown in Fig. (5.1) the infinite impedances for beam and plate are defined as:

ZM
b = ρbc

2
bSbκ

2
bc
−1
fb (1− j) (5.24)

ZM
p = 16ρsκ

2
pc

2
p/ω(1 + jΓ). (5.25)

The variables ρ, c and κ stand for the material density, longitudinal wave speed and radius
of gyration of the beam (with subscript b), respectively plate (with subscript p). The cross-
sectional area of the beam is termed Sb, the flexural phase speed of the beam is defined as
cfb =

√
ωκbcb and ρs stands for the mass per unit area of the plate. The shape of the junction

is responsible for the susceptance parameter Γ. If it is assumed that the plate and the beam are
of same material thickness and that the coupling factor is not depending on Γ, this is true if,
ZM

p � ZM
b , then it can be written that:

ηbp → w/4L. (5.26)

In Eq. (5.26) w describes the width of the beam and L stands for the length of the beam. The
modal density of the beam is given by:

nb(ω) = L/2πcfb. (5.27)

Using Eq. (5.11) the coupling loss factor from plate to beam can be written as:

ηpb = nbηbp/np, (5.28)

with np = Ap/4πκpcp. With these definitions the average response of the beam can be calcu-
lated:

〈v2
b〉 = 〈v2

p〉
Mp

Mb

nb

np

ηbp

ηb + ηbp
. (5.29)

5.1.4 Strain Response

The energy response of a system that is strained or stressed is described in this section. The
pressure in a sound field obeys the relation:

〈p2〉VR

ρ0c2
= 〈v2〉MR, (5.30)

with 〈v2〉 describing the mean square velocity of fluid particles. MR stands for the mass of the
fluid that is contained in the analysed room and given by MR = ρ0VR. The volumetric stiffness
or bulk modulus of the fluid is defined as K0 = ρ0c

2 and by using this relation, Eq. (5.30) can
be rewritten:

〈p2〉
(K0)2

=
〈(∂ρ

ρ0

)2〉
=
〈v2〉
c2

, (5.31)

with the volumteric strain or dilatation ∂ρ/ρ0. This equation states that the mean square mach
number, i.e. the ratio of particle velocity to sound speed, is equivalent to the mean square strain
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of the particles. In the case of plates a similar result can be found. The strain distribution in
the case of a plate of thickness h is given as:

ε(z) =
2z

h
εmax (5.32)

where εmax describes the maximum of the strain that is given at the free surface of the plate. If
only a layer of plate material with thickness dz is considered, the energy density of this layer is
1/2

∫
Eε2(z)dz, with the Young’s modulus E. The total strain energy density for the plate is

given by the following equation:

PEdensity = E

h/2∫
−h/2

1

2
z2 4

h2
ε2maxdz =

2κ2

h
E〈ε2max〉. (5.33)

If the kinetic energy density 1
2ρph〈v2〉 is set equal to the potential energy density (Eq. (5.33)),

and using that E = ρc2 and that for a homogeneous plate κ2 = h2/12, Eq. (5.33) can be written
as:

〈ε2max〉 =
h2

4κ2

〈v2〉
c2

l

= 3
〈v2〉
c2

l

. (5.34)

In the special case of a sandwich plate, all the stiffness is at the surface of the plate and κ = h/2.
Accordingly

〈ε2max〉 =
〈v2〉
c2

l

(5.35)

which is the same relation as presented in Eq. (5.31). Therefore it is valid to calculate the mean
square strain estimates from energy or velocity estimates.

5.2 Calculation of Variance in Temporal Mean Square Response

The goal of this section is to derive the standard deviation that is the square root of the variance
of the analysed system from the mean square response. Here, the variance that is dealt with, is
not a temporal variance but the variance from one “similar” system to another. Or it can also
be the variance from one location to another. The time averaging is assumed to vanish because
of long noise signals that work as input. Four aspects, described below, make it necessary to
calculate the variance between the mean and any member of the population:

(1) The irregularity of the spatial distribution of the excitation sources and the internal cou-
pling of the blocked system is not big enough and therefore equipartition is not guaranteed.
This means that the modal energies of the system that is directly excited can be unequal.

(2) The actual realisations of coupled systems will be different compared to the average of
the population. Thus, the actual number of resonant interacting modes will be different in each
realisation.

(3) The modal shape at the junction of the systems is responsible for the strength of the cou-
pling. Even due to small differences in the modal shape of the actual realisation to another, the
value of the coupling parameters will fluctuate.
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(4) The mode shapes will be different for each realisation of a system. Therefore the response
at the selected analysis position will fluctuate because the analysis position is randomly chosen.

The variance of a system can only be calculated based on the modal analysis, because in wave
analysis spatial coherence effects are not taken into account. Nevertheless these effects are
essential for variance determination.

5.2.1 Modal Power Flow and Response

For the calculation of the variance in the modal energies again the system in Fig. (4.4) is
discussed. It is assumed that only system 1 is excited by an external force and the resulting
power flow from the resonators of system 1 to the resonator σ of system 2 therefore is:

Π1σ =
∑
α

AασE(b)
α =

∑
α

Bασ(Eα − Eσ), (5.36)

with A and B defined in [Lyon and DeJong 1995]. The dissipation of energy of mode σ can be
written as Eσ∆σ if the damping of the mode is ∆σ. Then the energy Eσ becomes:

Eσ =
∑
α

E(b)
α (Aασ/∆σ) =

(∑
α

EαBασ
)(

∆σ +
∑
α

Bασ
)−1

. (5.37)

If the focus of interest lies in the velocity response, it can be written that:

〈v2
σ〉t = (Eσ/M2)Ψ2

σ(x2), (5.38)

with x2 defining the observation position. The mean square velocity response of system 2 at
this position is therefore:

〈v2
2(x2, t)〉t =

1

M2

∑
σ

Ψ2
σ(x2)

∑
α

E(b)
α Aασ/∆σ =

1

M2

∑
σ

Ψ2
σ(x2)

(∑
α

EαBασ
)
/
(

∆σ+
∑
α

Bασ
)
.

(5.39)

Each of the four aspects listed above can be found in Eq. (5.39): variance in modal energies

is included in E
(b)
α respectively Eα (1), the summation in α incorporates the variance of the

number of interacting modes (2), variance in coupling strength can be found in Aασ or Bασ (3)
and the variance of the mode shapes is presented by Ψ2

σ (4).
The variance of the sum in Eq. (5.39) should be found in the next step. This is a difficult
problem and therefore some simplifications are needed. At first it is assumed that the coupling
damping is much larger than the internal damping, i.e.

∑
α Bσα � ∆σ. With this assumption

Eq. (5.39) becomes:

〈v2
σ〉t =

(
Ψ2
σ
(x2)/M2

)∑
α

EαBασ/
∑
α

Bασ. (5.40)

This means that the weighed, averaged energy of the modes of system 1 define the energy of the
σ-mode. The weighting factor in this case is bασ = Bασ/

∑
α Bασ. The second case in which the

variance can be calculated is the one, when it is assumed that ∆σ �
∑

α Bασ. Then,

〈v2
σ〉t =

(
Ψ2
σ(x2)/(M2∆σ)

)∑
α

EαBασ (5.41)

SEA for Room Acoustics – 53 –



5 The Estimation of Response Statistics in SEA

with Bασ given by:

Bασ =
λασ

ξ2
ασ + 1

∆α∆σ

∆α + ∆σ
. (5.42)

Eq. (4.31) gives the definition of λασ, and ξασ = 2(ωσ − ωα)/(∆α + ∆σ). Setting the damping
of the modes of system 1 to ∆α = ∆1 = const leads to:

〈Bασ〉ωα = 〈λασ〉ωα
∆1∆σ

∆1 + ∆σ

π(∆1 + ∆σ)

2∆ω
(5.43)

and Eq. (4.30) is reproduced. Assuming that ∆σ = ∆1 means that (ξ2
ασ + 1)−1 has always

the same shape depending on the frequency values and therefore Eq. (5.41) can be plotted (see
Fig. (5.2)).

Figure 5.2: Sum of Eq. (5.41)[Lyon and DeJong 1995], p. 95

It is a sum of pulses, where the strength of the pulse is:

Cασ =
(Ψ2

σ/M2)∆1∆σ

∆1 + ∆σ
Eαλασ. (5.44)

In chapter 4 the assumption was made that resonance frequencies of modes of the population
model are independent of each other and are randomly distributed over a frequency interval ∆ω.
Accordingly the occurrence of the resonance frequencies can be described by a Poisson Process.
The spacings between the resonance frequencies obey the following probability density function:

pdf(δω) = exp(−δω/δω)/δω. (5.45)

The standard deviation of Eq. (5.41) in the case of a Poisson distribution of the resonance
frequencies, as derived in the literature [Lyon and Eichler 1964], becomes:

σ2
v2
σ

=
π

2
n1(ω)(∆1 + ∆σ)

[(Ψ2
σ/M2

)
∆1∆σ

∆1 + ∆σ

]
〈E2

α〉α〈λ2
ασ〉α. (5.46)

The ratio of the variance to the squared mean (termed as m2
v2
σ
) is given by:

σ2
v2
σ

m2
v2
σ

=
[
n1
π

2
(∆1∆σ)

]−1 〈E2
α〉α〈λ2

ασ〉α
〈Eα〉2α〈λασ〉2α

. (5.47)

The variance depends on uncertainties of the modal energy of the system that is directly excited
and on uncertain values of the coupling parameters. It is shown that the ratio of variance to
the squared mean is reduced by the number of overlapping modes.
In chapter 4 the relation N1〈Bασ〉α ≡ ωη21 was derived. The mean of the coupling loss factor is
termed as mη, then the variance and the ratio of variance to squared mean of the coupling loss
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factor are given by:

σ2
η =

1

ω2
〈λ2
ασ〉
( ∆1∆σ

∆1 + ∆σ

)2π

2
n1(∆1 + ∆σ) (5.48)

σ2
η

m2
η

=
1

π
2n1(∆1 + ∆σ)

〈λ2
αβ〉

〈λαβ〉2
. (5.49)

If the observation point in Eq. (5.41) is chosen randomly in space, then the factor 〈Ψ4
σ〉/〈Ψ2

σ〉2
must be added in Eq. (5.47). This factor arises because Ψ2

σ has to be treated as a random
variable, if the observation point is located randomly. If the point force that excites system 1
is located randomly at x1, the mode energy due to this force will vary too. The value of λασ
will also fluctuate if the assumption is made that the systems are joined at a random point.
Therefore the greatest value of the ratio of the variance to the squared mean of a single mode
of system 2 can be expressed as:

σ2
v2
σ

m2
v2
σ

=
{
n1
π

2
(∆1 + ∆2)

}−1
[
〈Ψ4

1〉
〈Ψ2

1〉2

]2[
〈Ψ4

2〉
〈Ψ2

2〉2

]2

, (5.50)

with Ψ1 and Ψ2 defining the mode shapes of the systems 1 and 2. Assuming that system 2
contains a group of modes, it has n2∆ω independent response functions, with the modal density
n2. The ratio σ2

v2
σ
/m2

v2
σ

for the multimodal response of system 2, for each independent response

function is:

σ2
v2
σ

m2
v2
σ

=
{
n1n2

π

2
(∆1 + ∆2)∆ω

}−1
[
〈Ψ4

1〉
〈Ψ2

1〉2

]2[
〈Ψ4

2〉
〈Ψ2

2〉2

]2

. (5.51)

The variance in this relation is symmetric in system 1 and 2. This means that the value of the
variance is the same for the cases of exciting system 1 and observing the response of system 2 or
vice versa. Some assumptions were made to calculate the variance. These assumptions increased
the variance (except the one that ∆α = ∆1 and ∆σ = ∆2) of the response and therefore more
variance is estimated than may occur in real world problems.

5.3 Calculation of Confidence Interval

Based on the predicted mean, an interval of values is derived with the help of the estimated
variance, in which a fraction of measurements lies. To calculate the probability that the observed
response 〈v2〉t = Θ lies between two defined values, a probability function, termed as φ(Θ) is
needed. By knowing the probability function, the probability that Θ lies in the “confidence
interval” Θ1 < Θ < Θ2 is given by:

CC =

Θ2∫
Θ1

φ(Θ)dΘ. (5.52)

The variable CC defines the confidence coefficient. From basic probability theory it is known
that Θ can take only positive values, the mean and the standard deviation were derived in
Sec. (5.2). A well known probability function that fulfills the requirements stated here is the
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gamma density:

ϕ(Θ) = Θµ−1exp(−Θ/λ)/λµΓ(µ). (5.53)

The parameters are defined as µ = m2
Θ/σ

2
Θ, λ = σ2

Θ/mΘ and Γ(µ) is the gamma function.
Introducing that y = ΘmΘ/σ

2
Θ means a variable change and Eq. (5.53) can be rewritten:

CC =
1

Γ(µ)

Θ2mΘ/σ
2
Θ∫

Θ1mΘ/σ
2
Θ

yµ−1e−ydy = Γ−1(µ)
[
λ
(
µ,

Θ2mΘ

σ2
Θ

)
− λ
(
µ,

Θ2mΘ

σ2
Θ

)]
. (5.54)

λ(µ,B) states the incomplete gamma function, which is defined as:

λ(µ,B) ≡
B∫

0

yµ−1e−1dy. (5.55)

The incomplete gamma function is well known and its values can be found in mathematical
standard literature.
Eq. (5.54) can be also used in another way. It is possible to define a fixed probability and
calculate the value Θmax ≡ rmΘ, which is the upper bound of the integral in Eq. (5.54) to reach
the defined probability. The equation to be solved to get this value is:

CC = Γ−1(µ)λ(µ, rµ). (5.56)

Solving this equation results in a line of constant probability that depends on r and µ as shown
in Fig. (5.3) for different CC values.

Figure 5.3: Upper bound of estimation intervals as a function of normalised variance [Lyon and DeJong
1995], p. 99

If the diagram presented in Fig. (5.3) is analysed at the point where σ2/m2 = 1, the following
statements can be made: in 80% of the cases the measured response has a value that equals the
mean plus less than 2.5 dB, in 95% of the cases this value is the mean plus less than 5 dB, and
the last line means that the in 99% of the cases the value of the measured response equals the
mean plus less than 7 dB. It is also possible to define a symmetric interval that is bounded by
the values Θ1 = mΘ/r and Θ2 = rmΘ to reach a defined probability. This interval implies that
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the mean plus/minus some value is reached in, e.g. 80% of the cases. The equation that has to
be solved to get the upper and the lower bound is:

CC = Γ−1(µ){λ(µ,mur)− λ(µ, µ/r)}. (5.57)
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6
Procedures of SEA

6.1 General Approach of SEA

The SEA procedure is divided into three steps that have to be fulfilled to analyse a given system.

(1) The system model has to be defined.

(2) The parameters that describe the given model have to be evaluated.

(3) The response variables have to be determined and analysed.

It should be noted here that SEA is a statistical method. It evaluates the energy levels in
resonant modes of dynamical systems from a statistical point of view. Therefore the number of
degrees of freedom is less than in a deterministic analysis. The response quantities that SEA is
mainly interested in, are the energy levels of resonant modes. Based on the energy levels the
vibration and sound variables can be determined. It should be kept in mind that the response
quantities are also statistical, this means that the results of SEA are averaged over frequency
bands and spatial regions of the system.

6.2 Defining the System Model

The basis of SEA is the balance of dynamical energy and power flow between subsystems of a
complex structure. Complex systems are divided into subsystems that are coupled mode groups
belonging to the physical components of the system. The following procedure is applied to define
a system model:

(1) The whole and complex system is divided into physical components of an appropriate size.
The natural modes of each physical component are concentrated into groups (subsystems) with
similar features.

(2) The physical coupling between the subsystems that are defined in step 1 must be determined.

(3) The external excitation to the whole system must be defined.

In SEA the modes of the subsystems and the coupling between subsystems are evaluated sta-
tistically and not deterministically. This means that each subsystem has its own energy value
and leads to the fact that the number of degrees of freedom in a SEA model equals the number
of subsystems.
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6.3 Evaluating the Subsystem Parameters

After the complex system is divided into subsystems the next step is to evaluate the subsystem’
parameters. The parameters that are necessary for SEA calculations are listed below:

(1) mode count

(2) damping loss factor

(3) coupling loss factor of connected subsystems

(4) input power due to external sources.

Three different expressions of the mode count exist: first, the modal density; in a second version
the mode count can be expressed by the number of resonant modes N or ∆N in a frequency
band and in a third form the average frequency spacing between modal resonances can be used
to describe the mode count. The mode count can be evaluated based on theoretical and numer-
ical methods for many types of subsystems, if the geometry and the material characteristics of
the subsystems are known. Sometimes the mode count can also be determined by experimental
methods or empirical formulas.
Theoretical and numerical methods for evaluating the damping loss factor are in general not
available because the damping depends on the details of the systems that are usually not known.
Therefore experiments and empirical calculations are used to obtain the damping loss factor.
But also in measurements it can be sometimes difficult to determine the damping loss factor
because the separation between coupling loss and damping loss is not that easy.
Theoretical and empirical calculations can be used to evaluate the coupling loss factor of con-
nected subsystems. In many cases it is possible to determine the coupling loss factor based on
the transmission loss or the radiation efficiency. These values are well known in the literature.
It is also possible to obtain the values of coupling loss factors from experimental and numerical
methods, but these methods are sensitive to errors, due to the fact that at first the response
of the subsystem must be calculated followed by a back calculation of the coupling loss factor.
This method gives only acceptable results if the damping in the subsystems is quite high.
The power fed into a subsystem due to an external excitation source can be evaluated by the
parameters of the subsystem. This procedure is possible if the amplitude of the force, pressure
or imposed motion is known. In some cases it can be advantageous to use a unit excitation for
the evaluation of the relative response amplitudes.

6.4 Evaluating the Response Variables

If the parameters of the subsystem are known, a power flow equation can be introduced for each
subsystem (here, it is assumed that the structure contains of two subsystems):

Π1,in = Π1,diss + Π12 = 2πf(η1 + η12)E1 − 2πfη21E2 (6.1)

Π2,in = Π2,diss + Π21 = −2πfη12E1 + 2πf(η2 + η21)E2. (6.2)

The energies can be calculated because the number of equations is equal to the number of
unknown system energies. In the case in which the analysed system is divided into a large
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number of subsystems, the power flow equations are written in matrix form:

[A]{E} = {Πin}. (6.3)

Matrix [A] contains the damping and coupling loss factors and inverting this matrix leads to the
result for the modal energy vector:

{E} = [A]−1{Πin}. (6.4)

Typical SEA models consist of 20 to 200 subsystems. The computation time needed for obtaining
the results is modest compared to deterministic calculations for the same frequency range. Based
on the results for the energies of the subsystems, other variables such as acceleration and sound
pressure can be determined. Again it has to be kept in mind that these results are averaged
over frequency and space.
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7
Calculation of Reverberation Time with SEA

In this chapter the methods of how SEA can be used to predict the reverberation time of a single
room are presented. Therefore the room is divided into several subsystems and the coupling loss
factors and the damping loss factors are calculated for each of these subsystems. Furthermore
the energy of every subsystem at time t = 0 must be known, which can be calculated over the
ratio of the modes of one subsystem to the whole number of modes. By knowing these values
a differential equation of the first order can be solved. The solution of this equation gives the
energy decay curve. Based on the energy decay curve of the room it is also possible to calculate
the reverberation time of the room, which is also shown in the following chapter. Room modes
can only be calculated analytically in rectangular rooms, therefore this procedure can only be
used in rectangular rooms. But the advantage of the described way is that it is also valid in
rooms, where the walls have different absorption coefficients. The content of this chapter is
mainly based on [Pfreundtner et al. 2015] and on [Pfreundtner 2014].

7.1 Division of Room into Subsystems

As mentioned above, the room is divided into seven subsystems, where every subsystem stands
for specific modes, as can be seen in Tab. (7.1). This mentioned division of a room into
subsystems was first proposed by Wilmshurst [Wilmshurst and Thompson 2012].

i Subsystem Reflected walls

1 x-axial modes x = 0, x = Lx

2 y-axial modes y = 0, y = Ly

3 z-axial modes z = 0, z = Lz

4 xy-tangential modes x = 0, x = Lx, y = 0, y = Ly

5 xz-tangential modes x = 0, x = Lx, z = 0, z = Lz

6 yz-tangential modes y = 0, y = Ly, z = 0, z = Lz

7 oblique modes x = 0, x = Lx, y = 0, y = Ly, z = 0, z = Lz

Table 7.1: Subsystems of the SEA model

The energy in every subsystem decays because of the damping loss factor of the subsystem ηi

and the coupling loss factor from the subsystem to the other subsystems ηij. The sound energy
in the room consists of the energy of the seven subsystems and decreases with time. It has to be
mentioned that the dissipation of air influences the decay of the sound energy, too. The temporal
development of the sound energy can be expressed in terms of a first order linear differential
equation:

d

dt
E(t) + (D + K)E(t) = 0. (7.1)
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The vector E(t) consists of the energy of the seven subsystems and depends on time:

E(t) =


E1(t)

E2(t)
...

E7(t).

 (7.2)

The whole sound energy in the room can be written as:

Eroom(t) = 10 · log
7∑
i=1

Ei(t)e
−m·c·t, (7.3)

where m is the dissipation factor of the air. The matrix of the damping loss factors is defined
as:

D =


η1 0 . . . 0
0 η2 . . . 0
...

...
. . .

...
0 0 . . . η7

 . (7.4)

The matrix of the coupling loss factors can be written as:

K =


∑7

j 6=1 η1,j −η2,1 . . . −η7,1

−η1,2
∑7

j 6=2 η2,j . . . η7,2

...
...

. . .
...

−η1,7 −η2,7 . . .
∑7

j 6=7 η7,j

 . (7.5)

In the following the damping loss factors, the coupling loss factors and the initial conditions of
the differential equation have to be determined to solve the problem.

7.2 Determination of Initial Conditions

The initial condition for every subsystem of the differential equation system describes the amount
of sound energy of the subsystem related to the whole stationary sound energy. The initial
energy is calculated in the octave band around the analysed frequency. The initial energy of the
subsystems can be calculated as the number of modes of the subsystem divided by the sum of
the modes of all subsystems. In the case of subsystems 1, 2 and 3, where the modes are axial,
the number of modes can be calculated with the following equation:

N1,2,3(f) =
2

c
Lx,y,z(fu − fl), (7.6)

where c stands for the speed of sound and Lx,y,z describes the length of the x-, y- and z-dimension
of the room. The upper frequency of the octave band fu and the lower frequency of the octave
band fl are calculated with the following formulas:

fu = f
√

2, fl =
f√
2
. (7.7)
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For subsystems 4, 5 and 6 the modes are tangential and the number of modes can be determined
as:

N4,5,6(f) =
π

c2
Lx,x,yLy,z,z(f

2
u − f2

l )− 1

c
(Lx,x,y + Ly,z,z)(fu − fl). (7.8)

For subsystem 7, where the modes are oblique, the frequency dependent number of modes is
defined as follows:

N7(f) =
4πV

3c3
(f3

u − f3
l )− πS

4c2
(f2

u − f2
l ) +

Sc

8c
(fu − fl). (7.9)

In the last equation V describes the volume of the cuboid, S the surface area of the cuboid and
Sc stands for the perimeter of the edges of the cuboid:

V = LxLyLz, S = 2LxLy + 2LxLz + 2LyLz, Sc = 4(Lx + Ly + Lz). (7.10)

With these definitions it is possible to calculate the initial energies of all the subsystems:


E1(0)

E2(0)
...

E7(0)

 =



N1(f)
Nsum(f)
N2(f)
Nsum(f)

...
N7(f)
Nsum(f)

 , (7.11)

where Nsum(f) is defined as:

Nsum(f) =
7∑
i=1

Ni(f). (7.12)

7.3 Calculation of Damping Loss Factors

This section deals with the calculation of the damping loss factors. To determine the damping
and coupling loss factors, the idea of modes is simplified. In this simplified version modes are
considered to be particles. One particle of the subsystem i propagates in the direction of the
mode of this subsystem with the speed of sound. This particle is reflected exclusively at the
walls that are listed in Tab. (7.1). The time after which the particle is reflected depends on the
length of the mean free path:

∆ti =
li
c
. (7.13)

The time in which n particles are reflected becomes:

ti =
li
c
n. (7.14)

The mean free path length of the axial particles is equal to the room dimensions, i.e. l1 = Lx,
l2 = Ly and l3 = Lz. The mean free path length of the tangential particles can be calculated as
the ratio of the surface of the treated area to the perimeter of the same area, i.e.:

l4,5,6 =
πSxy,xz,yz

Scxy,xz,yz
, (7.15)
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where S stands for the surface of the area and Sc stands for the perimeter of the area. The
mean free path length of the oblique particles equals the mean free path length of a cuboid:

l7 =
4V

S
, (7.16)

where again V is the volume of the cuboid and S is the surface of the cuboid. The sound energy
of all the particles of a subsystem is attenuated by the mean absorption coefficient of the walls w
by which the particles of the subsystem are reflected. The mean absorption coefficient is defined
as:

αi =

∑
w Si,wαi,w

Si
, (7.17)

with

Si =
∑
w

Si,w. (7.18)

To understand this equation better, a short example is given. In the case of subsystem 1, the
particles can only be reflected at the wall x = 0 or the wall x = Lx. Therefore Si = 2LyLz, and
if the absorption coefficient of wall x = 0 is called αx=0 and the absorption coefficient of wall
x = Lx is called αx = Lx then the mean absorption coefficient becomes:

α1 =
αx=0LyLz + αx = LxLyLz

Si
. (7.19)

After n reflections the decay of the sound energy of subsystem i can be calculated with the
following equation:

Ei(t) = Ei(0) · (1− αi)
n. (7.20)

Reformulating this equation leads to the following expression for the sound energy:

Ei(t) = Ei(0) · eln(1−αi)
c
li
t
, (7.21)

where n is substituted by Eq. (7.14). In a room without scattering objects the decay of the
sound energy of a single subsystem can be generally written as:

Ei(t) = Ei(0) · e−ηit. (7.22)

The assumption that Eq. (7.21) equals Eq. (7.22) leads to the formula:

Ei(0) · e−ηit = Ei(0) · eln(1−αi)
c
li
t
. (7.23)

By analysing Eq. (7.23), it is clear that the equation is only valid if:

ηi = − c
li
ln(1− αi). (7.24)
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With Eq. (7.24) the damping loss value of every subsystem can be calculated and the matrix
D can be established:

D =


− c
l1
ln(1− α1) 0 . . . 0

0 − c
l2
ln(1− α2) . . . 0

...
...

. . .
...

0 0 . . . − c
l7
ln(1− α7)

 . (7.25)

7.4 Calculation of Coupling Loss Factors

The coupling loss factors express the occurrence that energy flows from subsystem i to subsystem
j because of the scattering of the walls. In the case of seven subsystems 49 coupling loss factors
exist, they are determined in two steps. In the first step it has to be respected that the particles
of one subsystem cannot be scattered into every other subsystem. For example it is not possible
that a particle that is scattered on the wall x = 0 takes the direction of propagation of a z-axial
mode. In the following table the possible changes of direction of particles that are reflected at
the wall x = 0 are listed. If the entry is 1 this change of direction is allowed, if the entry is 0
the particle cannot be reflected into this subsystem.

PPPPPPPPPFrom:
To:

1 2 3 4 5 6 7

1 1 0 0 1 1 0 1
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 1 0 0 1 1 0 1
5 1 0 0 1 1 0 1
6 0 0 0 0 0 0 0
7 1 0 0 1 1 0 1

Table 7.2: Possible directions of propagation for wall x = 0 and x = Lx

For example in line 1 of Tab. (7.2) this means that the particle can be reflected from subsystem
1 into subsystems 1, 4, 5 and 7. The reflection from subsystem 1 into subsystems 2, 3 and 6 is
not allowed.
Knowing which changes of directions are allowed, a matrix can be defined for each wall that
contains the probability of the allowed changes. The scattering is assumed to be uniform. This
means that the probability of the changes of directions for one particle is the same for every
direction of propagation. The probability of the change of direction of propagation from one
subsystem to another subsystem depends therefore on the number of particles of the subsystems.
If a subsystem contains many particles, the probability that the scattering of particles happens
in a direction of propagation of the particles of the subsystem is higher than other directions
of propagation. The probability of sound energy transition of subsystem i into subsystem j at
wall w can be calculated by the ratio of particles of subsystem j to the sum of all particles of
all possible directions of propagation at wall w. In the case of a scattering at wall x = 0 this
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can be written mathematically as:

W1 =



N1(f)
Nposs(f) 0 0 N1(f)

Nposs(f)
N1(f)
Nposs(f) 0 N1(f)

Nposs(f)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

N4(f)
Nposs(f) 0 0 N4(f)

Nposs(f)
N4(f)
Nposs(f) 0 N4(f)

Nposs(f)

N5(f)
Nposs(f) 0 0 N5(f)

Nposs(f)
N5(f)
Nposs(f) 0 N5(f)

Nposs(f)

0 0 0 0 0 0 0
N7(f)
Nposs(f) 0 0 N7(f)

Nposs(f)
N7(f)
Nposs(f) 0 N7(f)

Nposs(f)


, (7.26)

with

Nposs(f) =
∑

i=1,4,5,7

Ni(f). (7.27)

For wall x = Lx the result for matrix W2 is exactly the same as W1. For wall y = 0 the possible
changes of direction of propagation are listed in Tab. (7.3): The matrix W3 for a scattering at

PPPPPPPPPFrom:
To:

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0
2 0 1 0 1 0 1 1
3 0 0 0 0 0 0 0
4 0 1 0 1 0 1 1
5 0 0 0 0 0 0 0
6 0 1 0 1 0 1 1
7 0 1 0 1 0 1 1

Table 7.3: Possible directions of propagation for wall y = 0 and y = Ly

wall y = 0 is the same as the matrix W4 for a scattering at wall y = Ly and can be written as:

W3 =



0 0 0 0 0 0 0

0 N2(f)
Nposs(f) 0 N2(f)

Nposs(f) 0 N2(f)
Nposs(f)

N2(f)
Nposs(f)

0 0 0 0 0 0 0

0 N4(f)
Nposs(f) 0 N4(f)

Nposs(f) 0 N4(f)
Nposs(f)

N4(f)
Nposs(f)

0 0 0 0 0 0 0

0 N6(f)
Nposs(f) 0 N6(f)

Nposs(f) 0 N6(f)
Nposs(f)

N6(f)
Nposs(f)

0 N7(f)
Nposs(f) 0 N7(f)

Nposs(f) 0 N7(f)
Nposs(f)

N7(f)
Nposs(f) ,


, (7.28)

with

Nposs(f) =
∑

i=2,4,6,7

Ni(f). (7.29)

The possible changes of direction of propagation for the walls z = 0 and z = Lz are given in
Tab. (7.4): The matrix W5 and W6 are equal again and have to be used for scattering at walls
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PPPPPPPPPFrom:
To:

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 1 0 1 1 1
4 0 0 0 0 0 0 0
5 0 0 1 0 1 1 1
6 0 0 1 0 1 1 1
7 0 0 1 0 1 1 1

Table 7.4: Possible directions of propagation for wall z = 0 and z = Lz

z = 0 or z = Lz: :

W5 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 N3(f)
Nposs(f) 0 N3(f)

Nposs(f)
N3(f)
Nposs(f)

N3(f)
Nposs(f)

0 0 0 0 0 0 0

0 0 N5(f)
Nposs(f) 0 N5(f)

Nposs(f)
N5(f)
Nposs(f)

N5(f)
Nposs(f)

0 0 N6(f)
Nposs(f) 0 N6(f)

Nposs(f)
N6(f)
Nposs(f)

N6(f)
Nposs(f)

0 0 N7(f)
Nposs(f) 0 N7(f)

Nposs(f)
N7(f)
Nposs(f)

N7(f)
Nposs(f) ,


, (7.30)

with

Nposs(f) =
∑

i=3,5,6,7

Ni(f). (7.31)

In the second step the amount of scattering for every subsystem at every wall has to be taken
into account. The scattering factor describes the amount of sound energy for which the angle
of incidence is not equal to the angle of reflection. If the particles of the wave are considered
again, this means that the scattering factor sw of wall w describes the probability that the angle
of incidence is not equal to the angle of reflection for a single particle. Therefore the particles
are coupled into a new subsystem based on the probability matrices Ww. It can be assumed
again that the particles of a subsystem are reflected after the mean free path length of the
subsystem. The probability that the particles are reflected at wall w can be defined by the ratio
of the surface of the wall Sw compared to the sum of all the surfaces Si at which particles of the
subsystem can be reflected. The 49 coupling factors can be determined based on the matrices
Ww as follows:

CF =
6∑

w=1

Ww ∗H · Sw · sw (7.32)

with

H =


c

l1S1

c
l2S2

. . . c
l7S7

c
l1S1

c
l2S2

. . . c
l7S7

...
...

. . . . . .
c

l1S1

c
l2S2

. . . c
l7S7

 , (7.33)
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where CF has the structure:

CF =

η11 . . . η71

...
. . .

...
η17 . . . η77

 . (7.34)

By knowing the matrix CF it is possible to calculate the matrix K. This can be done with the
following equation:

K = −CF +


∑7

j 6=1 ηij 0 . . . 0

0
∑7

j 6=2 η2j . . . 0

...
...

. . .
...

0 0 . . .
∑7

j 6=7 η7j

 . (7.35)

7.5 Calculation of Damping Factor of Air

This section describes how the sound power damping factor of air, termed as m can be calculated.
The method that is used for calculating m is described in [Bass et al. 1994]. Before starting with
the calculations, some definitions have to be made: ps0 is the reference value of the atmospheric
pressure, T stands for the atmospheric temperature in K, the reference atmospheric temperature
T0 is defined as 293.15K and the triple-point isotherm temperature is given as T01 = 273.16K.
With these definitions the saturation vapor pressure can be calculated:

psat

ps0
= 10.79586[1− T01

T
]−5.02808log

T

T01
+1.50474 ·10−4

(
1− 10

−8.29692[ T
T01
−1]
)
−2.2195983.

(7.36)

The relation between the absolute and relative humidity is given by the formula:

h = hr
psat

ps0
%. (7.37)

Assuming that the relative humidity of air is 50% then hr in the previous equation must be set
to 50.
Moreover the relaxation frequency for oxygen and nitrogen are needed for the calculation of the
absorption factor. The relaxation frequency of oxygen is given as:

Fr,O =
1

ps0

(
24 + 4.04 · 104h

0.02 + h

0.391 + h

)
(7.38)

and the relaxation frequency of nitrogen can be calculated with:

Fr,N =
1

ps0

(
T0

T

) 1
2

(
9 + 280h · e

(
−4.17[

T0
T

1/3
−1]

))
. (7.39)

Using all the described equations, finally the damping factor of air can be determined:

m = f2

(
1.84 · 10−11(

T

T0
)1/2 + (

T

T0
)−5/2

[
0.01278

e−2239.1/T

Fr,O + f2/Fr,O
+ 0.1068

e−3352/t

Fr,N + f2/Ftextr,N

])
Neper

m
,

(7.40)
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where f stands for the analysed frequency.

7.6 Solving the System of Differential Equations

All the values that are needed for solving Eq. (7.1) have been derived. In this section the way
to solve the system of first order linear differential equations that was defined in Eq. (7.1) is
presented. Therefore Eq. (7.1) is rewritten:

dE1(t)
dt

dE2(t)
dt
...

dE7(t)
dt

 = −A


E1(t)

E2(t)
...

E7(t)

 , (7.41)

where

A = D + K. (7.42)

The eigenvalues λ1 . . . λ7 of the matrix A have to be calculated. Based on these (here: seven)
eigenvalues, the eigenvectors c1...c7 that belong to these eigenvalues can be determined. By
knowing the eigenvalues and eigenvectors of the matrix A the system of differential equations
can be solved using the following formula:

E1(t)

E2(t)
...

E7(t)

 =
[
c1 c2 . . . c7

]

c1e

λ1t

c2e
λ2t

...

c7e
λ7t

 . (7.43)

In Eq. (7.38) the values for c1 . . . c7 can be calculated with the help of the initial energies:
c1

c2

...
c7

 =
[
c1 c2 . . . c7

]−1


E1(0)

E2(0)
...

E7(0)

 . (7.44)

The energy of all the subsystems can be determined and finally the energy states of the room
which are time-dependent can be calculated by inserting the energy of the subsystems in
Eq. (7.3). Using this result a decay curve can be calculated. In Fig. (7.1) a decay curve
for a rectangular room with the dimensions of 5 m x 3 m x 2.5 m can be seen. The absorption
coefficient of the walls was α = 0.05, only for the ceiling it was set to α = 0.57. The frequency
band with the center frequency 500Hz was analysed and the damping factor of the air was set
to m = 0.000628. The scattering factor of the six walls was set to 0.03. In Fig. (7.1) the
energy decay curve has a double slope. This means that the energy decay curve is not a straight
line but has a break. In [Nilsson 2004] this break is explained by a sound field that consists of
grazing and non-grazing parts. The grazing part contains waves that propagate in a direction
that is parallel to the highly absorbent wall and the non-grazing part consists of waves that
propagate with oblique incidence towards the absorbent wall. The whole energy in the room
can be calculated as the sum of the grazing and non-grazing parts. [Nilsson 2004] described this
phenomenon based on a model that consists of two subsystems. In this chapter the SEA model
to calculate the energy decay curve of the room consisted of seven subsystems. Each of the
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subsystems has an influence on the decay curve and the sound field contains of seven different
parts. The whole energy decay curve is a sum over these seven parts and this sum explains the
break in the decay curve.
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Figure 7.1: Example: Decay curve rectangular room 5 m x 3 m x 2.5 m, ceiling absorbent

7.7 Calculation of T60, T30 and T20

The next step is to calculate the reverberation time of the room based on the energy decay curve.
When the decay curve was calculated as described in the previous section, it is not difficult to
calculate the reverberation time. At first the point of intersection between the decay curve and
a linear slope that is constantly -5dB has to be found (see Fig. (7.2), same room configuration
as in the example shown before). If the reverberation time T60 should be calculated, also the
point of intersection of the decay curve and a linear slope that is constantly -65 dB has to be
determined. This can be seen in Fig. (7.3). In the next step a polynom of degree 1 is fit to the
two points of the decay curve with the help of the build-in MATLAB function “polyfit”. The
polynomial has the form (see [MATHWORKS]):

p(x) = p1x
1 + p2x

0. (7.45)

The output of the function “polyfit” are the values for p1 and p2. Knowing these values, replacing
p(x) of the previous equation with −60 and reformulating the equations gives the following
formula for the reverberation time:

−60− p2

p1
= x, (7.46)
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where x is the reverberation time.
For the calculation of T30 and T20 the procedure is nearly the same but instead of the -65 dB
linear slope, a -35 dB and a -25 dB linear slope have to be used. For Tearly the polynomial was
fitted between the 0 dB point of the decay curve and the -5 dB linear slope and for Tlate the
polynomial was fitted between the -45 dB point of the decay curve and the -65 dB point of the
decay curve. The rest of the method is completely the same. For the presented example the
values for the reverberation times are: T60 = 1.5554, T30 = 1.3152, T20 = 1.1565, Tearly = 0.5519
and Tlate = 1.5942.
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Figure 7.2: Point of intersection at -5dB
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Figure 7.3: Point of intersection at -65dB

7.8 Proof of Concept Experiment

The room impulse responses were measured in a real room and the data obtained from these
measurements is used to calculate the decay curve of the room with the Schroeder backward
integration. Then the decay curve of the same room is predicted with SEA as described above
and the two decay curves are compared. With this procedure the accuracy of predicting the
decay curve with the presented SEA technique can be evaluated. In the first experiment the
measurement was done in the empty room without absorbers. The dimensions of the room
are 4.39 m x 3.29 m x 2.95 m, a picture of the empty room is shown in Fig. (7.4). The
analysis frequency was set to 1000 Hz which is definitely in the valid frequency range of SEA.
In [Zeitler 2006, p. 38] it is written that three or more modes in the analysed frequency band
are enough, so that the method of SEA gives results with 2-3 dB of error. In the octave band
with the centre frequency of 1000 Hz this restriction is fulfilled in any case. In this case all the
walls in the SEA model are defined as reverberant with an absorption coefficient of α = 0.03 and
a scattering factor of 0.03, the absorption coefficient of air was calculated with the equations
presented in Sec. (7.5), where the temperature was 20◦C and the relative humidity was set to
50%. As can be seen in Fig. (7.5) there is an excellent agreement between the decay curve of
the measured data and the predicted decay curve. This means that in the described situation
the prediction of the decay curve with SEA works very well.

In a second proof of concept experiment parts of the floor of the room are covered with an
absorber. The absorber has the dimensions of 2.38m x 2.38m and at 1000 Hz the absorption
coefficient is α = 1.1353. The mean absorption coefficient of the floor was calculated as (final
value: 0.3359):

αm =
(Af −Aa)αf +Aaαa

Af
, (7.47)
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Figure 7.4: Empty room in which the measurement data was obtained

where Af is the area of the floor, Aa is the area of the absorber, αf is the absorption coefficient
of the floor and αa is the absorption coefficient of the absorber. The comparison of the decay
curves for this second experiment is shown in Fig. (7.6). Again there is a good agreement
between the decay curve of the measured data and the decay curve obtained with SEA method.
To sum this proof of concept experiments up, it can be said that the prediction of the decay
curve with the SEA method works excellent. In both experiments, for the empty room and the
room with absorber on the floor, the SEA method provides the same result as obtained with
measurements and therefore also the values for the reverberation time would be the same. In
Fig. (7.6) it can be seen that starting at roughly 0.7 s the measured curve and the simulated
curve differ. This can be explained by the background noise that exists in the measurement.
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Figure 7.5: Comparison measurement and simulation, empty room, frequency band with centre frequency
1000 Hz
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Figure 7.6: Comparison measurement and simulation, room with absorber on the floor, frequency band with
centre frequency 1000 Hz
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SEA for Room Acoustics

8
Calculation of Decay Curves of Coupled Rooms

with SEA

In this chapter it is discussed how to determine the reverberation time in the case of two
coupled rooms with SEA. In Fig. (8.1) the ground plot of two coupled rooms can be seen, where
S stands for the aperture size. When two or more spaces are connected through an aperture the
connected rooms are called coupled rooms. The method of coupling rooms is even used in the
design of concert halls to use the acoustical efforts of coupled systems (nonexponential energy
decay [Bradley and Wang 2005]). As in chapter 7, subsystems have to be defined, the damping

Figure 8.1: Two Coupled rooms: ground plot

and coupling loss factors have to be derived and finally a system of differential equations has
to be solved. As an example two rooms that are coupled by an aperture are analysed. In this
case the SEA model consists of two subsystems, therefore two damping loss factors and a 2 x 2
coupling loss matrix are needed. Moreover two differential equations have to be solved.

8.1 Calculation of Damping Loss Factors

The damping loss factor of a room can be calculated by the following equation [Zeitler 2006]:

ηi =
2.2

fTi
, (8.1)
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where f is the frequency of interest and Ti is the reverberation time of the room6. The difficulty
in this equation is the determination of the reverberation time. But with the derivations and
explanations of the previous chapter the reverberation time of rooms can be accurately predicted,
as proven before.

8.2 Calculation of Coupling Loss Factors

The calculation of coupling loss factors for the scenario room to room is also defined in the work
of [Zeitler 2006]:

ηij =
c0Sτij

8πfVi
, (8.2)

where c0 stands for the speed of sound of air, S for the area of the aperture, τij for the transmis-
sion coefficient between the subsystems and Vi for the volume of room i. With the knowledge of
the damping and coupling loss factors, a loss factor matrix can be derived and the differential
equations for the two subsystems can be solved.

8.3 Solving the System of Differential Equations

For the case of two coupled rooms the matrix of coupling and damping loss values can be defined
analogue to the previous chapter and this results in:

A =

[
η1 + η12 −η21

−η12 η22 + η21

]
. (8.3)

The system of differential equations becomes:[
dE1(t)
dt

dE2(t)
dt

]
= A

[
E1(t)

E2(t)

]
. (8.4)

The same procedure as in the section before is applied, the eigenvalues and eigenvectors are
calculated. Based on the initial energies the constants that are needed for solving the differential
equations can be determined. In the case of coupled rooms, at time t = 0 the whole energy is
in the room that is excited. Therefore the initial energy of room1 is set to 1 and the initial
energy of room2 is set to 0, i.e. E1(0) = 1 and E2(0) = 0. Finally the solution of the system of
differential equations in matrix form is:[

E1(t)

E2(t)

]
=
[
c1 c2

] [c1e
λs,1t

c2e
λs,2t

]
, (8.5)

where λ1 and λ2 are scaled by the angular, centre frequency of the analysed octave band, i.e.:

λs,i = 2πfλi. (8.6)

With the help of Eq. (7.3) the energy of the whole system depending on time can be calculated.
To determine the decay curve, the total energy has to be normalised by the maximum energy

6 This equation was also derived in Sec. (3.1.2)
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value. The last two statements can be written in a mathematical sense as:

Etot(t) = 10 · log
∑2

i=1Ei(t)e
−mct∑2

i=1Ei(0)
. (8.7)

Knowing the decay curve, the values for T20, T30 and T60 can be found by the same method as
in chapter 7.

8.4 Proof of Concept Experiment

In this section the results obtained with the presented SEA method for coupled rooms are
compared with a method presented by David Bradley and Lily Wang in the paper “The effects
of simple coupled volume geometry on the objective and subjective results from nonexponential
decay” [Bradley and Wang 2005]. In this paper a method for calculating the decay curve of two
coupled rooms is defined. A power balance equation is derived for room1 :

P − A1α1c0E1

4
− Sc0E1

4
+
Sc0E2

4
= 0 (8.8)

and for room2 :

−A2α2c0E2

4
− Sc0E2

4
+
Sc0E1

4
= 0, (8.9)

where Ai stands for the surface of the ith room, αi is the average absorption coefficient of the
ith room, Ei describes the energy of the ith room and P stands for the power of the sound
source. These two equations define the steady state response of the rooms. Setting P to zero
two differential equations can be derived, which describe the decay curve of the rooms:

c0

4
(A1SE1 − SE2) = −V1

dE1

dt
(8.10)

and

c0

4
(−SE1 +A2SE2) = −V2

dE2

dt
. (8.11)

In Eq. (8.10) and Eq. (8.11) AiS = Aiαi + S and for Ei the form

Ei = Ei0e
−2δt (8.12)

is assumed, where Ei0 stands for the initial energy of the ith room and δ is the decay constant
of the room. Using Eq. (8.12) in Eq. (8.10) and (8.11) leads to the following equations:

c0

4
(A1SE10e

−2δt − SE20e
−2δt) = 2V1δE10e

−2δt (8.13)

and

c0

4
(−SE10e

−2δt +A2SE20e
−2δt) = 2V2δE20e

−2δt. (8.14)

The terms e−2δt in Eq. (8.13) and Eq. (8.14) can be cut and the two equations can be rewritten
in matrix form as:[

c0
4 [A1S − 2V1δ] − c0

4 S

− c0
4 S

c0
4 [A2S − 2V2δ]

] [
E10

E20

]
=

[
0
0

]
. (8.15)
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Setting up the determinant of this matrix system results in:

4V1V2δ
2 − c0

2
(A1SV2 +A2SV1) +

c2
0

16
(A1SA2S − S) = 0. (8.16)

This equation can be solved, if the volume of the rooms, the absorption coefficients of the walls
of the rooms and the size of the aperture are known. Solving this quadratic equation leads to
two values for δ, i.e. δ1 and δ2:

δ1,2 =
c0

16V1V2
(A1SV2 +A2SV1)±

√[
c0

16V1V2
(A1SV2 +A1SV1)

]2

− c2
0(A1SA2S − S)

64V1V2
. (8.17)

With the help of these two values, the reverberation time of the two rooms can be calculated
with the equation:

Ti =
6.9

δi
. (8.18)

In [Bradley and Wang 2005] an equation found by [Cremer et al. 1982] is used to calculate the
decay curve of room1 :

Li(t) = −
(

60

Ti

)
t+ 10log

(
Ei0

Eref

)
, (8.19)

where Li stands for the sound pressure level in the ith space. For the case that δ1 is bigger than
δ2 the early portion of the sound energy in room1 is dominated by the characteristics of room1
and the late portion of the sound energy in room1 is dominated by the characteristics of room2
on room1. Therefore a break results in the decay curve of room1 and the equation for the early
and the late parts of the energy decay are:

L1early(t) = −
(

60

T1

)
t+ 10log

(
E10

Eref

)
, (8.20)

and

L1late(t) = −
(

60

T2

)
t+ 10log

(
E21

Eref

)
, (8.21)

where E21 is given by:

E21 = k1k2E10. (8.22)

The energy that is transported from room2 into room1, i.e. E21, is defined by the initial energy
in room1 and the coupling factors k1 and k2 that are defined by the geometry and the absorption
of the rooms:

k1 =
S

A1S
, k2 =

S

A2S
. (8.23)

Assuming that Eref in Eq. (8.20) and Eq. (8.21) is equal E10 and inserting Eq. (8.22) in Eq.
(8.21) the equations for the early and late decay parts become:

L1early(t) = −
(

60

T1

)
t, (8.24)
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and

L1late(t) = −
(

60

T2

)
t− 10log

(
A1SA2S

S2

)
. (8.25)

In the following table values for the room dimensions, the absorption coefficients of the walls
and the aperture are given. The SEA method presented in Sec. (8.1-8.3) is compared with the
method explained in Sec. (8.4) by using the values of Tab. (8.1) and Tab. (8.2). The aperture

x-dimension Lx = 15m

y-dimension Ly = 10m

z-dimension Lz = 2.5m

absorption coefficient ceiling αc = 0.9

absorption coefficient floor αf = 0.9

absorption coefficient front αfr = 0.9

absorption coefficient back αb = 0.1

absorption coefficient left αl = 0.1

absorption coefficient right αr = 0.1

Table 8.1: Dimensions and absorption coefficients of room1

x-dimension Lx = 15m

y-dimension Ly = 10m

z-dimension Lz = 2.5m

absorption coefficient ceiling αc = 0.03

absorption coefficient floor αf = 0.03

absorption coefficient front αfr = 0.03

absorption coefficient back αb = 0.03

absorption coefficient left αl = 0.03

absorption coefficient right αr = 0.03

Table 8.2: Dimensions and absorption coefficients of room2

size was set to S = 7 m2 and the analysed frequency band had a centre frequency of f = 1000
Hz. Before comparing the results of the two methods, in Fig. (8.2) the early and late decay
curves of the Bradley&Wang (B&W) method can be seen: The point of intersection between
the early and the late decay curve is calculated. In the first part, till the point of intersection is
reached, the early decay curve is used and for the late decay the influence of the second room
dominates the decay curve of the first room. Therefore the decay curve of the coupled rooms
has a double slope and its typical characteristics can be seen in Fig. (8.3). In Fig. (8.4) the
decay curve obtained with the Bradley&Wang method is compared with the SEA method for
calculating the decay curve of coupled rooms. It can be seen that the general characteristics of
the decay curve in both models is the same. Both curves have the typical double slope in the
case that the walls of room1 are quite absorbent and the walls of room2 have small absorption
coefficients. With this setup the early decay is dominated by the effects of room1 and the late
decay is given by the decay of room2 because the energy decays slower in room2 than in room1.
The descent in the late decay is also equal, the only difference between the methods is that the
“point of intersection” is reached earlier in the case of the SEA method. In the Bradley&Wang
method the early part only consists of the effects of room1. In the SEA method an overall result
is obtained that is influenced by the effects of both rooms. So in the SEA method the early part
is dominated by the effects of room1 but also effects of room2 are present and therefore there
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Figure 8.2: Early and late decay curves of two coupled rooms using Bradley & Wang method
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Figure 8.3: Final decay curve of two coupled rooms using Bradley & Wang method
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Figure 8.4: Decay curve of two coupled rooms: SEA method compared with Bradley & Wang method, room1
absorbent

is a difference in the steepness of the early decay.
Based on this comparison and explanations it can be said that the presented, new SEA method
for calculating the decay curves of coupled rooms seems to give right results. The main advantage
of the SEA method compared to the Bradley&Wang method is that there are no restrictions.
The Bradley&Wang method can only be used if the condition that δ1 > δ2 (see paragraph below
Eq. (8.17)) is fulfilled. This means that the walls of room1 have to be more absorbent than the
walls of room2. The method cannot give right results if the absorption coefficients are chosen
the other way round, i.e. the walls of room2 are more absorbent than the walls of room1, but
the SEA method can handle this case. Another disadvantage of the Bradley&Wang method is
that the results are not frequency dependent. For every frequency the same result is obtained,
in the new SEA method decay curves for different frequencies give different results due to the
frequency dependency of the presented equations.
In Fig. (8.5) the results for the SEA method and the Bradley&Wang method are shown, if
the absorption values for the rooms are chosen as presented in Tab. (8.3) and Tab. (8.4) (the
absorption values for the two rooms from the experiment before were just swapped). It can
be seen that the Bradley&Wang method gives wrong results if δ1 < δ2 which is not surprising
because it was mentioned in the derivation of the method that it does not work in cases, where
δ1 < δ2. However, the results obtained with the SEA method seem to be right in this case too.
The double slope of the decay curve vanished, because the effects of room2 have no influence
on the decay curve of room1. In the beginning there is only a slight energy exchange between
the two rooms, therefore the early decay of room1 is always dominated by the effects of room1.
In the example that was discussed before the late decay was dominated by the effects of room2,
which is not the case here because the energy in room2 dissipates much faster than the energy in
room1. Therefore also the late decay is only dependent on the decay of room1 and the resulting
decay curve becomes a linear slope.
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x-dimension Lx = 15m

y-dimension Ly = 10m

z-dimension Lz = 2.5m

absorption coefficient ceiling αc = 0.03

absorption coefficient floor αf = 0.03

absorption coefficient front αfr = 0.03

absorption coefficient back αb = 0.03

absorption coefficient left αl = 0.03

absorption coefficient right αr = 0.03

Table 8.3: Dimensions and absorption coefficients of room1

x-dimension Lx = 15m

y-dimension Ly = 10m

z-dimension Lz = 2.5m

absorption coefficient ceiling αc = 0.9

absorption coefficient floor αf = 0.9

absorption coefficient front αfr = 0.9

absorption coefficient back αb = 0.1

absorption coefficient left αl = 0.1

absorption coefficient right αr = 0.1

Table 8.4: Dimensions and absorption coefficients of room2
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Figure 8.5: Decay curve of two coupled rooms: SEA method compared with Bradley & Wang method, room2
absorbent
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8.5 Decay Curves of Different Room Configurations

In this section it is analysed how the geometry of the coupled rooms, the aperture and the
absorption coefficients influence the decay curve of the coupled rooms. In Fig. (8.6) three decay
curves are compared, the analysed frequency was set to 1000 Hz and the aperture was 5 m2.
The solid line (named SEA1) stands for the same case as presented before, obtained with the
values of Tab. (8.1) and Tab. (8.2). The dashed line presents the results in the case that room1
has the same dimensions and absorption coefficients as before but the coupled room is smaller
than in SEA1. In Tab. (8.5) the parameters for room2 are given. In SEA3 both rooms are

x-dimension Lx = 5m

y-dimension Ly = 3m

z-dimension Lz = 2.5m

absorption coefficient ceiling αc = 0.03

absorption coefficient floor αf = 0.03

absorption coefficient front αfr = 0.03

absorption coefficient back αb = 0.03

absorption coefficient left αl = 0.03

absorption coefficient right αr = 0.03

Table 8.5: Dimensions and absorption coefficients of room2, SEA2

x-dimension Lx = 5m

y-dimension Ly = 3m

z-dimension Lz = 2.5m

absorption coefficient ceiling αc = 0.9

absorption coefficient floor αf = 0.9

absorption coefficient front αfr = 0.9

absorption coefficient back αb = 0.1

absorption coefficient left αl = 0.1

absorption coefficient right αr = 0.1

Table 8.6: Dimensions and absorption coefficients of room1, SEA3

quite small and room1 is absorbent and room2 reverberant. The used values for SEA3 for room1
are given in Tab. (8.6) and for room2 the same values as before were used and can be looked
up in Tab. (8.5). For the case SEA1, in which room1 was large and absorbent and room2 was
large and reverberant, the decay curve shows the typical double slope. Comparing the decay
curve of SEA2 with SEA1, the only thing that changed is the size of room2, it can be seen that
the curve obtained with SEA2 is steeper than the curve of SEA1. This means that the energy
dissipates faster because of the fact that room2 is smaller. This effect can be seen even stronger
in case of SEA3, were both rooms are small. To sum this example up it was found out that the
room dimensions have an influence on the steepness of the decay curves: the smaller the rooms,
the steeper the decay curves and the shorter the reverberation times. Comparing these results
with Sabine’s equation for calculating the reverberation time of rooms, it can be seen that also
in Sabine’s equation bigger volumes lead to larger values for the reverberation times. Moreover
it can be seen that the breakpoint appears earlier in time if the energy decay curve is steeper.
In large rooms the breakpoint appears later.
The same room configurations as for Fig. (8.6) are used in Fig. (8.7) but the aperture was
reduced from 5 m2 to 1 m2. Changing the aperture size leads to the situation that the influence
of room2 arises later, i.e. that the breakpoint in the decay curves appears later in both directions
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(smaller dB values but greater time values). The explanation for this phenomenon is that the
smaller aperture decreases the energy exchange between the two rooms and therefore room1 has
more influence on the decay curve as compared to Fig. (8.6) where the aperture was larger.
Furthermore it can be noticed that the late part of the decay curve, where the effects of the
second room dominate, is not as steep as in the case where the aperture was 5 m2.
In the next experiment the aperture size was set to 1 m2 and the same results as discussed
before were analysed for different frequencies. In Fig. (8.8) the comparison between the results
of SEA1, SEA2 and SEA3 obtained for the octave band with centre frequency 1000 Hz are
compared to the same experiments obtained at 2000 Hz. In Fig. (8.9) the frequency of the blue
curves was 500 Hz. These experiments show that the higher the frequency the steeper the decay
curves. This means that the reverberation time becomes shorter, if the frequency is increased.
This makes sense because for higher frequencies energy dissipates faster. The breakpoint is
shifted down on the vertical axis if the frequency is increased, whereas the horizontal position
of the breakpoint is shifted to the left if the frequency is higher.
In the last experiment (result see Fig. (8.10)) the absorption coefficients of the walls of room2
were set to α = 0.1. Again the results are compared to the values presented in Fig. (8.6). It
can be seen that an increase of the absorption coefficients leads to steeper decay curves and
therefore shorter reverberation times. Energy is dissipated faster if the absorption coefficients
are increased. The breakpoint is shifted down on the vertical axis and a little bit to the right
on the horizontal axis in the case that the absorption of room2 is increased.
In the following table the findings from these experiments are summed up, ↑ stands for increase
↓ for decrease (for the decay curve increase means steeper and decrease means smoother). The
SEA model is therefore in good agreement with well-known phenomena.

Parameter change Decay curve

room size ↑ ↓
frequency ↑ ↑
aperture ↑ early ↓; late ↑
absorption ↑ ↑

Table 8.7: Changes of parameters and effects on decay curve
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Figure 8.6: Comparison decay curves for different room setups, 1000Hz, aperture 5m2
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Figure 8.7: Comparison decay curves for different room setups, 1000Hz, aperture 1m2
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Figure 8.8: Comparison decay curves for different room setups, 2000Hz, aperture 1m2
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Figure 8.9: Comparison decay curves for different room setups, 500Hz, aperture 1m2

– 86 – SEA for Room Acoustics



8.5 Decay Curves of Different Room Configurations

time [s]

0 0.5 1 1.5

e
n

e
rg

y
 [

d
B

]

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

SEA1

SEA1 room2 0.1

SEA2

SEA2 room2 0.1

SEA3

SEA3 room2 0.1

Figure 8.10: Comparison decay curves for different room setups, 1000Hz, aperture 1m2, α room2 0.1
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9
Calculation of Decay Curves of Rooms

Containing Plates

In this chapter the whole SEA system consists of two subsystems: one is a rectangular room and
the other subsystem is a plate. As described in the sections before, again the damping loss values
and the coupling loss values for the two subsystems have to be determined. With the knowledge
of the loss factor matrix, the solution to the system of differential equations is exactly the same
as in chapter 8. The difficulty in solving the described problem lies in the determination of the
damping and coupling loss factors that characterise the plate. The damping loss factor of the
room can be found exactly in the same way as in chapter 8.

9.1 Radiation Factor

One very important value, when calculating the damping loss factor of a plate and later on the
coupling loss factor of a plate, is the radiation factor of the analysed plate. In the next section
the radiation factor of a plate termed σ is derived.

9.1.1 Meaning of the Radiation Factor

The meaning of the radiation factor in acoustics is shortly described in this subsection. All the
information given here is based on [Kollmann et al. 2006].
If a structure produces structure-borne sound and if this sound has a velocity component per-
pendicular to the surface of the structure, then sound waves are radiated into the air. The
radiation factor describes how much sound power is transported from a structure into the air.
The specific impedance of air is known as:

Z = ρ0c0, (9.1)

where ρ0 stands for the density of air and c0 is the sound velocity of air. The surface of the
structure is called S and ṽ2 stands for the squared sound particle velocity averaged over S. The
effective, radiated sound power is termed P and by using these definitions the radiation factor
can be calculated with the following equation:

σ =
P

ρ0c0Sṽ2
. (9.2)

If a rigid surface (e.g. a bulb) is vibrating with a frequency that has a much smaller wavelength
in air than the lengths of the surface, then the velocity of the particles in the air has to be
equal the velocity of the rigid surface. This means that a plane wave is radiated and therefore
the sound particle velocity and sound pressure are in phase. If ṽ is the effective velocity of the
radiating surface, then the effective sound pressure of the radiating surface can be calculated
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with:

p̃ = ρ0c0ṽ. (9.3)

Using this equation the radiated sound power becomes:

P = Sp̃ṽ = Sρ0c0ṽ
2. (9.4)

If Eq. (9.4) is inserted into Eq. (9.2) it can be easily seen that σ = 1. The radiation factor
of a vibrating surface is therefore the same as the ratio of the actually radiated power of the
structure to the maximum power that a bulb with the same surface as the analysed structure
would radiate at the same frequency. It is noticed once again that this maximum power that
the bulb radiates is only reached if the bulb’s dimensions are large compared to the wavelength
of the radiated sound waves. In most of the cases σ is smaller than 1 but there are also cases
where σ > 1.
It is assumed that a plate is excited with a frequency higher than the first resonance frequency of
the plate. Furthermore it is supposed that the plate is vibrating with more or less one eigenmode.
The plate consists of different regions, where each of the regions vibrates in-phase but adjacent
regions vibrate inversely phased. The radiated sound power is dependent on the ratio of the
distance between the in-phase antinodes on the plate to the wavelength λL of the wave that is
radiated into the air. This distance equals the wavelength of the bending wave λB. If λB < λL,
then the inversely phased regions of the plate influence the near-field as well as the far-field of
the radiated airborne sound, and a phenomenon known as acoustic short-circuit occurs. This
means that the vibrations of the plate are immediately balanced by local airflows and this effect
degrades the radiation power of the plate.
For the case that λB > λL, the radiation is termed “complete radiation”. The radiation of the
wave that is propagating in the air is not happening perpendicular to the surface of the plate.
But as coincidence frequency is reached, i.e. λB = λL , the waves radiated into the air are
propagating parallel to the surface of the plate. The wave-field of the bending waves and the
wave-field of the waves in the air are in-phase. Therefore the airborne sound wave is fed with
new power every time a antinode of the plate is passed. Because of this effect the power supply
at coincidence frequency can be much higher than at frequencies higher than fc, where the angle
of radiation is smaller than 90◦. At frequencies below the first resonance frequency of the plate,
all points of the plate vibrate in-phase and the radiation behaviour of the plate can be described
by the radiation behaviour of a bulb.

9.1.2 Determination of the Radiation Factor

The radiation factor of the plate depends on the dimensions of the plate and the plate’s material.
Because of the importance of the radiation factor in many acoustics problems, e.g. in machines
or cars many rectangular plates are used, analytical formulas for calculating the radiation factor
exist. The radiation factor is frequency dependent, rising from low frequencies to its maximum
value at f = fc, where fc is known as coincidence frequency. After reaching its maximum value,
the radiation factor decreases if frequency is further increased. At high frequencies the value
of the radiation factor approaches asymptotically the value 1 as described in the previous sub-
section in more detail. In [Zeitler 2006] or [Crocker 2007] or [Kollmann et al. 2006] equations
for calculating the radiation factor dependent on frequency are given (here the equations from
[Zeitler 2006] are used). Some restrictions have to be made to calculate the radiation factor of
plates:
(1) The plate is excited by a concentrated force.
(2) Only modes that have resonance frequencies in the analysed frequency interval are used.
(3) The amplitudes of the modes are on average the same and their phases are randomly dis-
tributed.
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(4) The analysed plate is build in an infinitely extended plate, because this guarantees that there
is no air exchange between the upper surface and the lower surface of the analysed plate.

Before deriving the formulas for determining the radiation factor, the equation for calculat-
ing the coincidence frequency has to be presented. The coincidence frequency is [Kollmann et
al. 2006], defined as:

fc =
c2

0

2π

√
ρpLz,p

B
, (9.5)

where B is the bending stiffness, ρp stands for the density of the material the plate is made of
and Lz,p is the length of the z-dimension of the plate. The bending stiffness can be calculated
with [Möser 2009]:

B =
E · L3

p,z

12(1− µ2)
. (9.6)

In Eq. (9.6) E stands for the Young’s modulus, and µ is known as Poisson number, both E and
µ depend on the material. The frequency range for calculating the radiation factor is divided
into four regions. In every region different equations for determining the radiation factor are
needed. The first frequency interval is lower bounded by 20 (smallest frequency that can be
heard) and upper bounded by f11 that is given by:

f11 =
c2

0β

2Sfc
, (9.7)

with

β =

Lp,x

Lp,y
+

Lp,y

Lp,x

2
(9.8)

and S the surface of the plate. In the frequency region 20 < f < f11 the radiation factor is
defined as:

σ =
4S

c2
0

· f2, 20 < f < f11. (9.9)

In the frequency region between f11 and the coincidence frequency fc the radiation factor is
approximately given by:

σ ≈ λc

S
g1(α) +

Pλc

S
g2(α), f11 < f < fc. (9.10)

Before using this equation certain variables have to be defined. The wavelength at coincidence
frequency λc is defined as:

λc =
c0

fc
. (9.11)

In Eq. (9.9) c0 can be inserted because the speed of sound at the coincidence frequency is equal
to the speed of sound of air. This is known by the definition of the coincidence frequency. The
variable P in the second term on the right hand side of Eq. (9.8) stands for the perimeter of
the plate:

P = 2Lx + 2Ly. (9.12)
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The frequency dependent scaling factors in Eq. (9.8) g1(α) and g2(α) can be calculated with
the following two equations:

g1(α) =


8
π4

(1−2α2)

α(1−α2)
1
2

f < fc

2

0 f > fc

2

, (9.13)

and

g2(α) =
1

4π2

(1− α2)ln
(

1+α
1−α

)
+ 2α

(1− α2)
3
2

 , (9.14)

where α is defined as the square root of the ratio of the analysed frequency to the coincidence
frequency, i.e.:

α =

√
f

fc
. (9.15)

At coincidence frequency the radiation factor is defined as:

σ ≈
√
Lp,x

λc
+

√
Lp,y

λc
, f = fc. (9.16)

The radiation factor at fc depends on the lengths of the plate and the wavelength of the plate
at coincidence frequency. At fc the radiation factor reaches its maximum value. For the case
that f is greater than fc the radiation factor can be determined with the following formula:

σ ≈ 1√
1− fc

f

, f > fc. (9.17)

In the calculations of the radiation factor, there is a case decision: if σ(f) reaches a higher value
than the value at coincidence frequency, the value of σ is set to the value of σ at fc because it
is not possible that σ is larger than σ(fc). This case decision is especially used in frequencies
slightly above fc because for those frequencies the term in the nominator of Eq. (9.17) can
become very small and therefore the value for σ quite high. To avoid this problem the value of
the radiation factor for these critical frequencies is set to σ(fc).
As an example the radiation factor of a plate made of acryl glass is analysed. In Tab. (9.1) the
material properties and the dimensions of the plate are given.

Length x-dimension Lx = 1m

Length y-dimension Ly = 1m

Length z-dimension Lz = 0.008m

Young’s modulus E = 2700N/mm2

Poisson number µ = 0.37

Density ρp = 1180kg/m3

Coincidence frequency fc = 4979.6Hz

Table 9.1: Material values and dimension for a plate of acryl glass

Knowing all the values that are important for calculating the radiation factor, it is possible to
plot the radiation factor over frequency (see Fig. (9.1)).
Fig. (9.1) shows the typical course of the radiation factor, when it is plotted over frequency.
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Figure 9.1: Example: Radiation factor for an acryl glass plate

At low frequencies the radiation factor is increasing until it reaches the coincidence frequency.
Then it stays constant (problem described before) and decreases asymptotically. At very high
frequencies it reaches the value of 1.

9.2 Calculation of Damping Loss Factors

In [Zeitler 2006] it is mentioned that the damping loss factors of the plate are often looked
up in tables but that they can also be calculated. The damping loss factor of a plate can be
determined using [Zeitler 2006] or [Norton and Karczub 2003]:

η =
ρ0c0σ

ωmp
, (9.18)

where ρ0 is the density of air, c0 is the speed of sound of air, σ is the radiation factor of the
plate, ω is the angular frequency and mp stands for the area specific mass. The specific mass is
defined as ([Weselak 2014], [Friesecke 2014]):

mp =
ρpVp

Lx,pLy,p
= ρpLz,p, (9.19)

with ρp the density of the material the plate is made of, Vp the volume of the plate and Lx,p,
Ly,p and Lz,p stand for the x-, y- and z-dimension of the plate.
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9.3 Calculation of Coupling Loss Factors

In this section the calculation of the loss factor due to coupling of the room to plate and plate
to room respectively, is presented. [Zeitler 2006] shows an equation for determining the coupling
loss factor in the case of the coupling of a plate to a room. By using the reciprocity principle
that was presented in Sec. (5.3) in Eq. (5.11) the coupling loss factor for room to plate can be
calculated based on the coupling loss factor plate to room. The coupling loss factor for the plate
to room scenario is defined in [Zeitler 2006] as (the factor of 2 is intoruduced here because it is
assumed that the plate radiates into the room from two sides, see: [Norton and Karczub 2003,
p. 426]):

ηpr =
2ρ0c0σ

2πfmp
, (9.20)

where mp is the area specific mass of the plate (see Eq. (9.19)). With the help of the reciprocity
principle it can be written that:

ηrpnp = ηprnr, (9.21)

where np and nr describe the modal density of the plate and room, respectively. To use this
procedure the modal densities of the plate and the room have to be calculated at first. According
to [Zeitler 2006] the modal density of a plate can be calculated as:

np(ω) ≈ Lp,xLp,y

4π

√
ρp

B
. (9.22)

This equation for determining the modal density of plates is valid for frequencies higher than
f11 that was derived in Eq. (9.5). The modal density of the plate is therefore only depending on
the mechanical and geometric properties. Moreover the modal density for the room has to be
defined. This is again done with [Zeitler 2006], where the modal density of rooms is calculated
with:

nr(ω) =

(
ω2

2π2c3
0

)
V +

(
ω

8πc2
0

)
SA +

(
1

16πc0

)
Sc. (9.23)

In Eq. (9.20) V stands for the volume of the room, SA describes the surface of the room and
Sc the length of all the walls of the room. In the case of a rectangular room this values can be
calculated as:

Sc = 2(LxLy + LxLz + LyLz) (9.24)

and

SA = 4(Lx + Ly + Lz). (9.25)

With all these definitions the coupling loss factor from room to plate becomes:

ηrp =
ρ0c0σ

2πfmp
· np

nr
. (9.26)

Knowing the coupling and damping loss factors, again a system of two differential equations
must be solved to get the decay curve and therefore the reverberation time. The system of
differential equations is exactly the same as in chapter 8, with the difference that the damping
and coupling loss factors of Sec. (9.2) and Sec. (9.3) have to be inserted in Eq. (8.3). The
way to solve the differential equations is not presented again here because it is analogue to Sec.
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(8.3). But results for a system that contains of a room and a plate are shown in Sec. (9.4).

9.4 Proof of Concept Experiment

In this chapter the results obtained with the SEA method are compared to measurement re-
sults. The measurements were made in the same room as presented in Sec. (7.8). Here, the
room (parameters see chapter 7.8) was coupled with three plates of acryl glass (parameters see
Tab. 9.1) of dimensions 1 m x 1 m x 0.008 m. The plates and the room are coupled but there is
no coupling between the plates (see zeros in Eq. (9.27)). The loss factor matrix of this system
becomes a 4 x 4 matrix and can be written as:

A =


η1 + η12 + η13 + η14 −η21 −η31 −η41

−η12 η2 + η21 0 0
−η13 0 η3 + η31 0
−η14 0 0 η4 + η41

 . (9.27)

The initial energy is assumed to be in the room at first, therefore the vector of the initial energies
is: 

E1(0)

E2(0)

E3(0)

E4(0)

 =


1
0
0
0

 . (9.28)

With these definitions it is possible to solve the system of differential equations as shown before
(see Sec. (7.6) and Sec. (8.3)). In Fig. (9.2) the results obtained with the SEA method are
compared to measurement results, the frequency was set to 1000 Hz. It can be seen that the
results of the measurement and SEA method agree nearly perfectly. In the next figure the
measurement and SEA results were compared again, this time at a frequency of 4000 Hz. Again
the predicted and the measured decay curves fit together very well (the discrepancy starting
at around 1 second is again because of the background noise in the measurements). The same
absorber as described in Sec. (7.8) was put on the floor. For the 1000 Hz scenario the absorption
coefficient was given in Sec. (7.8), in the case of 4000 Hz the absorption value of the used absorber
is α = 1, 07479. In Fig. (9.4) and Fig. (9.5) the decay curves of the room containing an absorber
on the floor and coupled with three plates can be seen. Also in the case where SEA is used
to calculate the decay curve of a room that contains an absorber on the floor and additionally
three plates, it can be said that the method works quite good. There is a discrepancy in the
case where the analysis frequency was set to 1000 Hz but for the scenario, where the analysis
frequency was set to 4000 Hz the measurment results and the predicted results obtained with
SEA are nearly equal. For the 1000 Hz case it could be that the radiation factors of the plate
are underestimated by the given equations. The presented plate has a coincidence frequency
that is far above 1000 Hz and has a small radiation efficiency at 1000 Hz, which could explain
the mismatch between measurement and simulation.
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Figure 9.2: Comparison measurement and SEA method: Room coupled with three plates of acryl-glass,
1000Hz
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Figure 9.3: Comparison measurement and SEA method: Room coupled with three plates of acryl-glass,
4000Hz
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Figure 9.4: Comparison measurement and SEA method: Room coupled with three plates of acryl-glass, ab-
sorber on the floor, 1000Hz
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Figure 9.5: Comparison measurement and SEA method: Room coupled with three plates of acryl-glass, ab-
sorber on the floor, 4000Hz
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10
Calculation of Energy Decay Curve of

non-rectangular Rooms

In this chapter SEA is used to determine the energy decay curve of a non-rectangular room.
The results simulated with the SEA method are compared to measurement results obtained in
a reverberation chamber. It is evaluated if SEA can be used in non-rectangular rooms too, or if
it is restricted to rectangular rooms. The procedure used in this chapter is exactly the same as
presented before, therefore the main focus in this chapter lies in the analysis of the results.

10.1 Analysis of Energy Decay Curves of non-rectangular Rooms

The measurement results were obtained in a reverberation chamber. The dimensions of the
room can be seen in the following two figures (see Fig. (10.1) and Fig. (10.2)). It is clearly
visible that the reverberation chamber is non-rectangular.

Figure 10.1: Reverberation chamber: ground plot

To use the SEA method presented before that was only valid for rectangular rooms, here, the
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Figure 10.2: Reverberation chamber: front elevation

reverberation chamber is approximated by a cuboid that has the same volume as the actual
reverberation chamber. Therefore the dimensions of the room were set to 7.36 m x 6.25 m x
4.375 m. The surface of the floor of the reverberation chamber is 46 m2 and the volume is
201.25 m3. The cuboid has exactly the same surface and the same volume as the reverberation
chamber. In the first experiment the measurement results obtained in the empty room, in which
all the walls were reverberant, were compared to the SEA results. The absorption coefficient in
case of reverberant walls was set to 0.03 in the SEA method. In Fig. (10.3) the results for this
scenario for an analysis frequency of 1000 Hz are shown. Notice that for all presented results
in this chapter, the measurement results were averaged over 8 microphone positions and two
source positions. All together this is an averaging over 16 measurement points. In Fig. (10.4)
the comparison of the energy decay curve for the same experiment as before but with an analysis
frequency of 4000 Hz is presented. Comparing Fig. (10.3) and Fig. (10.4) shows that if the
analysis frequency is changed from 1000 Hz to 4000 Hz the agreement between the energy decay
curve obtained by measurement and the one resulting from the SEA method is even increased.
Although the values obtained from measurement and prediction are not exactly the same in the
1000 Hz scenario, the SEA method predicts the actual results quite well. The general course of
the decay is the same for both methods.
In the next step an absorber is put on the floor. The area of the floor that was covered with the
absorber was 13.5 m2 and the absorption coefficient of the absorber was α = 1.04 for 1000 Hz as
well as for 4000 Hz. The absorption coefficient of the whole floor was calculated with Eq. (7.47).
In Fig. (10.5) and Fig. (10.6) the results of the energy decay curve for the reverberation chamber
with an absorber on the floor are presented for an analysis frequency of 1000 Hz and 4000 Hz
respectively. Again it can be seen that the SEA method predicts the energy decay curves quite
well. The general course of the two curves in Fig. (10.5) and Fig. (10.6) are equal, although
there are slight differences in the exact values of the curves.
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Figure 10.3: Comparison SEA vs measurement: energy decay curve non-rectangular room, all walls rever-
berant, 1000 Hz
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Figure 10.4: Comparison SEA vs measurement: energy decay curve non-rectangular room, all walls rever-
berant, 4000 Hz
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Figure 10.5: Comparison SEA vs measurement: energy decay curve non-rectangular room, absorber on the
floor, 1000 Hz
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Figure 10.6: Comparison SEA vs measurement: energy decay curve non-rectangular room, absorber on the
floor, 4000 Hz
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10.2 Energy Decay Curve of non-rectangular Room with Diffusors

In reverberation chambers diffusors are used to obtain a diffuse sound field. In the presented
reverberation chamber measurements were made for five different setups. The number of the
diffusors and the size of the diffusors was different in each setup. The diffusors were made of
acryl glas, the main values of acryl glas can be looked up in Tab. (9.1). In chapter 9 a method
was presented to calculate the energy decay curve of rooms coupled with plates (here: plate
represents the diffusor). This method can be used to compare the energy decay curves obtained
by measurement and by the SEA method for these four setups. In the following table, the main
values for each setup are presented, the thickness of all the diffusors was 5mm. The energy

Setup Number of One-sided Dimensions of Total area Total area
diffusors area of diffusors diffusors setup diffusors room

0 0 0 m2 0 m2 0 m2

1 2 3 m2 2 m x 1.5 m 6 m2 6 m2

2 1 1.5 m2 1 m x 1.5 m 6 m2 12 m2

2 2.25 m2 1.5 m x 1.5 m

3 1 1.5 m2 1 m x 1.5 m 6 m2 18 m2

3 1.56 m2 1.25 m x 1.25 m

4 4 0.8 m2 0.8 m x 1 m 7 m2 25 m2

1 1.5 m2 1 m x 1.5 m

1 2.25 m2 1.5 m x 1.5 m

Table 10.1: Main values of different setups analysed in reverberation chamber

decay curve for these five different setups was calculated for an analysis frequency of 1000 Hz
and 4000 Hz. Based on these energy decay curves the reverberation times T20 and T30 were
calculated. The values for the reverberation time obtained by measurement are compared to the
values of the reverberation time obtained by prediction with the SEA method. In Tab. (10.2)
the values of the reverberation times are presented for the case where the room did not contain
an absorber and the analysis frequency was set to 1000 Hz. The absolute value of the difference
between the reverberation times is also given. The same comparison was also done for an analysis

Setup 0 1 2 3 4

Measurement (T30) 6.2021 5.8480 5.7562 5.6828 5.6053

SEA method (T30) 4.5116 8.1739 9.078 9.4915 9.8375

Difference (T30) 1.6905 2.3259 3.3218 3.8087 4.2322

Measurement (T20) 6.1530 5.7985 5.7186 5.6277 5.5743

SEA method (T20) 4.5108 6.8045 8.2981 9.0206 9.5061

Difference (T20) 1.6422 1.006 2.5795 3.3929 3.9318

Table 10.2: Comparison reverberation time, measurement vs SEA, different setups, 1000 Hz, empty room;
values in s

frequency of 4000 Hz (see Tab. (10.3)). In the next experiment an absorber was put on the floor
of the room and again the reverberation times for different setups obtained by measurement and
SEA method were compared. In Tab. (10.4) the results for an analysis frequency of 1000 Hz for
all the setups for the room containing an absorber on the floor can be seen. In Tab. (10.5) the
analysis frequency was set to 4000 Hz and again the results for the room containing an absorber
on the floor are presented. The same comparison was also done for an analysis frequency of

SEA for Room Acoustics – 101 –



10 Calculation of Energy Decay Curve of non-rectangular Rooms

Setup 0 1 2 3 4

Measurement (T30) 2.6157 2.4534 2.3761 2.3807 2.3549

SEA method (T30) 2.5453 1.9026 1.7632 1.7877 1.8112

Difference (T30) 0.0704 0.5508 0.6129 0.593 0.5437

Measurement (T20) 2.5071 2.3460 2.2808 2.2885 2.2662

SEA method (T20) 2.5453 1.8898 1.7432 1.7627 1.7822

Difference (T20) 0.0382 0.4562 0.5376 0.5258 0.484

Table 10.3: Comparison reverberation time, measurement vs SEA, different setups, 4000 Hz, empty room;
values in s

Setup 0 1 2 3 4

Measurement (T30) 2.3604 1.8218 1.7094 1.5559 1.5208

SEA method (T30) 2.1690 7.1029 7.8788 8.1643 8.3921

Difference (T30) 0.1914 5.2811 6.1694 6.6084 6.8713

Measurement (T20) 2.2256 1.7701 1.6684 1.5544 1.5121

SEA method (T20) 1.8490 4.9657 6.6816 7.4157 7.845

Difference (T20) 0.3766 3.1956 5.0132 5.8613 6.3329

Table 10.4: Comparison reverberation time, measurement vs SEA, different setups, 1000 Hz, room with
absorber; values in s

4000 Hz. By analysing the results it can be seen that the SEA method predicts the course of

Setup 0 1 2 3 4

Measurement (T30) 1.4791 1.2817 1.2119 1.1305 1.1141

SEA method (T30) 1.2467 1.2644 1.2229 1.2667 1.3079

Difference (T30) 0.2324 0.0173 0.011 0.1362 0.1938

Measurement (T20) 1.4337 1.2673 1.2010 1.1157 1.1013

SEA method (T20) 1.2194 1.2318 1.1695 1.1950 1.2219

Difference (T20) 0.2143 0.0355 0.0315 0.0793 0.1206

Table 10.5: Comparison reverberation time, measurement vs SEA, different setups, 4000 Hz, room with
absorber; values in s

the reverberation times right in the case of an analysis frequency of 4000 Hz. In the case where
the floor of the room was covered with an absorber, the SEA method predicts the reverberation
times for an analysis frequency of 4000 Hz even very good for all the different setups. There
are only small differences between measurement and simulation in this scenario. In the case of
an analysis frequency of 1000 Hz the SEA method gives wrong results. The more plates in the
room, the higher the values of the reverberation times of the room. This wrong behaviour can
be explained by the value of the radiation factor and the values of the damping and coupling loss
factors of the plate. The analysis frequency of 1000 Hz lies far below the coincidence frequencies
of the used plates. This means that the radiation factor for the analysis frequency is very
small. Therefore the coupling and damping loss factors of the plates are very small (they are
multiplicated by the value of the radiation factor for the analysis frequency) and the energy
decay curve is far too flat. So the 1000 Hz scenario can not be predicted right by the SEA
method. Another point that should be mentioned here is that in case of very flat decay curves
(this is true for reverberation chambers) slight differences in the steepness of the curve lead to
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big differences in the reverberation times, because it takes comparatively long till the −65, −35
or −25 dB points of the decay curve are reached.
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11.1 Summary and Outlook

In this chapter a short summary of the thesis is given and the chapter is finished by an outlook
how future works could extend the research on SEA.

11.1.1 Summary of Chapters [2-5]

In chapters [2-5] the main theory of SEA was derived. It started with an explanation what
Statistical Energy Analysis means and then the historical development of the method was shortly
described. Deriving an SEA model is always combined with discussing the energy relations of
a simple linear resonator consisting of a mass, a stiffness element, a resistance and an exciting
force. The equation of motion of a linear resonator was discussed for different excitation forces
and it was found that displacement, velocity and acceleration are related in the same way for
every case of excitation. Therefore one can change between different response variables without
concern for excitation. Equations for the time averaged potential and time averaged kinetic
energies of a linear resonator were found.
The system of a linear resonator was extended to a more complex system, in which the equations
of motion were solved using eigenfunctions. The finding of this extension was that more complex
dynamical systems can be treated as a group of linear resonators. Moreover it was shown that
systems can be described by modal descriptions and wave descriptions and that at least in theory,
both ways of describing the systems should lead to the same results. After the discussion of
simple linear resonators the next step was to couple two linear resonators and describe the energy
effects produced by these coupled systems. The energy exchange between coupled resonators
was analysed and based on the energy flow the basic statements of SEA were derived.
The calculation of the mean and the variance of response variables was discussed and it was
shown why the calculation of the variance makes sense in SEA. The variance in SEA is not a
temporal variance but the variance of the response variables from one similar system to another.
The confidence interval, which is another analysis tool in probability theory was also presented.

11.1.2 Summary of Chapters [6-10]

After discussing the basic theory of the method the procedures for applying SEA to real world
problems were derived in chapter [6]. It was found that a complex system has to be divided into
subsystems. The energy in the system decays, because of the coupling and damping loss factors
of the subsystems. To analyse the energy in the complex systems, the coupling and damping
loss factors have to be calculated. In case of many subsystems the equations are extended to
matrix form and finally the energy matrix can be solved by knowing the energy of the external
excitation and the loss factor matrix.
In chapters [7-9] a method based on the principles of SEA was used to calculate the energy
decay curve of rooms. Starting with a single rectangular room, in a second step the method was
used to calculate the energy decay curve of coupled rooms and in the last step the method was
extended to the case where a room was coupled with plates. In the case of the single room, the
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room is divided into seven subsystems, where each subsystem represents a mode group. The
coupling loss factors, the damping loss factors and the initial energies were derived to finally
solve a system of first order linear differential equations. The summation of the energies of the
subsystems gives the total energy in the room. The energy of the subsystem can be described by
an exponential function that decays by a factor that contains the energy losses due to damping,
coupling and dissipation of air. The nice thing here is that the total energy of the room can
be calculated depending on time. Based on this result the reverberation time of the room can
be calculated. The energy decay curve predicted with SEA was compared with measurement
results obtained in a real room and it was found that there is a prefect agreement between
measurement and prediction.
The method used to calculate the energy decay curve of a single rectangular room was extended,
resulting in a new method to calculate the energy decay curve of coupled rooms. For calculating
the damping loss factor in the case of coupled rooms, the reverberation time of the rooms is
needed. Here, this value was found by using the SEA method for calculating the energy decay
curve (and based on this result the reverberation time) of a single rectangular room as described
above. After determining the coupling and damping loss factors for coupled rooms, again a
system of differential equations was solved, resulting in the energy decay curve. In this case the
results were compared with a method presented in the literature [Bradley and Wang 2005] and it
was found that the SEA method is also working very well in this case. Furthermore the method
was used to describe the break point in the double slope of the decay curve that is typical for
decay curves of coupled rooms.
The last step was to use SEA to derive the energy decay curve of a room that is coupled with
plates. The damping loss factor of the plates is needed and the coupling loss factor room to plate
and plate to room must be known to get the energy decay curve in this scenario. Equations for
both, the coupling and damping loss factor, exist in the literature, where the loss factors can
be calculated if the radiation factor of the plate is given. Calculations for the radiation factor
were given and the meaning of the radiation factor was explained. Knowing the loss factor
matrix again a system of differential equations was solved, resulting in the energy decay curve.
For the case of a room coupled with plates the predicted energy decay curve was compared to
measurements again, and by analysing the results it was found that measurement and prediction
lead to the same results.
Based on all those findings in chapter [10] the SEA method was used to predict reverberation
times in a non-rectangular reverberation chamber for different setups. The reverberation times
obtained with SEA were compared to measurement results and the results were right if the
radiation factor for the analysis frequency was not to low. In case of 4000 Hz the results of
measurement and prediction agreed well, but for the 1000 Hz scenario SEA gives wrong results.
The analysis frequency of 4000 Hz lies near the coincidence frequency of the used plate that
means that the value of the radiation factor is quite large for this frequency and therefore also
the damping and coupling loss factors that are directly proportional to the radiation factor give
right values. For the 1000 Hz scenario the radiation factor is very low (nearly 0) and therefore
also the damping and coupling loss factors are very low and the energy decay curves obtained
with SEA are far too flat compared to measurement results.

11.1.3 Outlook

To sum it up it can be said that SEA prediction worked quite good for the analysed cases and
is therefore an appropriate method to calculate energy decay curves for different room acoustial
situations. Based on the energy decay curves the reverberation time (and other variables of
acoustics) can be calculated. The main advantage of SEA to other prediction methods is that
the calculations are very simple and can be executed very fast. The limitations of the method
lie in the frequency range, for low frequencies the results obtained with SEA are not right.
Moreover, in the case of rooms coupled with plates the radiation factor plays an important role.
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In lower frequency ranges the calculation of loss factors leads to false values (they are too small)
because the equations for calculating the radiation factor give very small values far below the
coincidence frequency. The use of SEA in non-rectangular rooms can be further analysed, maybe
for different rooms in the future. The method seems to work also in non-rectangular rooms but
maybe improvements to the existing method in the case of non-rectangular rooms can be found
in future works.
A remaining and very interesting topic is the analytical calculation of the radiation factor and
therefore the calculation of the loss factors in case of a room coupled with a plate. It would
be very nice if the equations for the damping loss factor and coupling loss factor of plates for
frequencies that lie far below the coincidence frequency of the plate could be improved.
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List of symbols

A Area; Amplitude coefficient

A Acoustic admittance

a Acceleration; General amplitude constant

B Mechanical susceptance , Im[Y ]

B Bending rigidity

B Power flow coefficient for coupled modal energies

b Normalised modal susceptance

C General amplitude constant

CC Confidence coefficient

c Wave speed

d Distance; Ordinary differential operator; Modal coupling parameter

E Energy

E Young’s modulus

E Modal energy

E Energy density

e Exponential function

f cyclical frequency [Hz]

G Mechanical conductance

G Gain

g Normalised modal conductance

H Hankel function
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h Thickness

I Wave intensity

J Bessel function

j Imaginary number

K Spring constant

k Wave number

L Length; Level on dB scale

L Force spectral amplitude

L Modal force

l Force

M Mass

N Mode count

n Modal density

n(f) Modal density per Hertz

n(ω) Modal density per rad/sec

P Pressure spectral amplitude

P Wavenumber transform of pressure

p Pressure; Distributed force excitation

R Resistance, Re[Z]; Dashpot constant

r Radius; viscous resistance coefficient

S Cross-sectional area

S Power spectral density function

T Tension

t Time

V Volume

V Volume spectral amplitude
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v Velocity

X Reactance, Im[Z]

x Coordinate position

Y Mechanical mobility

Y Modal displacement

Y Wavenumber transform of displacement

y Displacement

Z Mechanical impedance; Acoustic impedance
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α Absorption coefficient

∆ Damping bandwidth; Difference operator

δ Delta function

δf Average modal frequency spacing, Hz

∂ Partial difference operator

φ Probability density function

Γ Gamma function

η Coupling/damping loss factor

κ Bending radius of gyration

Λ Generalised spatial difference operator

λ Wavelength

µ Normalised inertia coupling coefficient

Π Power

ρ Mass density

σ Standard deviation; Stress

τ Transmission coefficient

ω Radian frequency

ξ Modal frequency ratio

Ψ Eigenfunction; Mode shape
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[Möser 2009] MÖSER, Michael; Technische Akustik. Springer-Verlag Berlin Heidelberg, 2009

[Nilsson 2004] NILSSON, Erling; Decay Process in Rooms with Non-Diffuse Sound Fields Part
I: Ceiling Treatment with Absorbing Material. Building Acoustics, Volume 11, 2004, pp. 39-60

[Norton and Karczub 2003] NORTON, M. P.; KARCZUB, D. G.; Fundamentals of Noise and
Vibration Analysis for Engineers. Second Edittion. Cambridge University Press, 2003, p. 410

[Pfreundtner 2014] PFREUNDTNER, Felix; Nachhallzeitprognosen in Räumen mit nicht-diffusem
Schallfeld. Bachelorarbeit, Technische Universität München, 2014

SEA for Room Acoustics – 111 –



13 Bibliography

[Pfreundtner et al. 2015] PFREUNDTNER, Felix; MOMMERTZ Eckhard; SEEBER, Bernhard;
Statistische Energie Analyse: Ein Verfahren zur schnellen Prognose der Nachhallzeit in Räumen
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Appendix

14.1 Description of Figures

In the following table, all the figures of the master thesis are listed.

Figure number F ilename

Figure 2.1 SEA basic system.jpg

Figure 3.1 linear resonator.jpg

Figure 3.2 resonance curve.jpg

Figure 3.3 frequency response rectangular filter.jpg

Figure 3.4 frequency response 2 filter.jpg

Figure 3.5 k1 k2 area.jpg

Figure 3.6 contour for evaluation.jpg

Figure 3.7 interaction resonator plate.jpg

Figure 3.8 plate connection.jpg

Figure 3.9 direct reverberation field plate.jpg

Figure 3.10 k area.jpg

Figure 3.11 xs area.jpg

Figure 4.1 energy sharing resonator.jpg

Figure 4.2 spectral density indirectly excited.jpg

Figure 4.3 coupled MDOF system.jpg

Figure 4.4 connected subsystems.jpg

Figure 4.5 energy transfer model.jpg

Figure 4.6 reciprocal system A.jpg

Figure 4.7 reciprocal system B.jpg

Figure 4.8 reciprocal system C.jpg

Figure 4.9 plate point force.jpg

Figure 4.10 plate joined plate.jpg

Figure 4.11 superposition principle.jpg

Figure 4.12 transmission two systems.jpg

Figure 5.1 beam plate system.jpg

Figure 5.2 sum of pulses.jpg

Figure 5.3 upper bound estimation intervals.jpg

Figure 7.1 decay curve.eps

Figure 7.2 point of intersection 5.eps

Figure 7.3 point of intersection 65.eps

Figure 7.4 empty.jpg
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Figure 7.5 comparison empty 1000Hz.eps

Figure 7.6 comparison absorber 1000Hz.eps

Figure 8.1 coupled rooms.png

Figure 8.2 bradley wang early.eps

Figure 8.3 bradley wang final.eps

Figure 8.4 bradleywang final comparison.eps

Figure 8.5 bradleywang final comparison exp2.eps

Figure 8.6 SEA1 SEA2 SEA3 5m2.eps

Figure 8.7 SEA1 SEA2 SEA3 1m2.eps

Figure 8.8 SEA1 SEA2 SEA3 1m2 2000.eps

Figure 8.9 SEA1 SEA2 SEA3 1m2 500.eps

Figure 8.10 SEA1 SEA2 SEA3 room2 0 1.eps

Figure 9.1 radiation factor example.eps

Figure 9.2 Room plate 3panels 1000Hz sigma.eps

Figure 9.3 Room plate 3panels 4000Hz sigma.eps

Figure 9.4 Room plate 3panels 1000Hz sigma absorber.eps

Figure 9.5 Room plate 3panels 4000Hz sigma absorber.eps

Figure 10.1 reverberation chamber 1.png

Figure 10.2 reverberation chamber 2.png

Figure 10.3 chamber empty 1000Hz.eps

Figure 10.4 chamber empty 4000Hz.eps

Figure 10.5 chamber absorber 1000Hz.eps

Figure 10.6 chamber absorber 4000Hz.eps

The .jpg files of chapter 2 up to chapter 5 are taken from [Lyon and DeJong 1995]. The pages
of the book, where the fiugres can be found, are given in the descriptions of the figures. All the
.eps files were produced with MATLAB. The codes for reproducing the figures are safed in the
folder \Matlab Figures that was submitted with the master thesis. Figures (8.1) and (10.1-10.2)
were produced with Microsoft Word.

14.2 Description of Matlab Files

In this section a short description of the written MATLAB files is given, files are submitted in
folder \Matlab Code.

calc edc.m: Function to calculate the energy decay curve of impulse response obtained by
measurement for 1000 Hz case.

calc edc 4000.m: Function to calculate the energy decay curve of impulse response obtained
by measurement for 4000 Hz case.

calc initial energy.m: With this function the energy of a room can be calculated, based
on the modes of the room.

calc rad factor.m: This function can be used to calculate the radiation factor of a plate.
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calc reverberation time.m: With this funticon the values for the reverberation time T60,
T30 and T20 can be calculated.

calc room decay DGL.m: MATLAB file to calculate the room decay of a single room as
presented in chapter 7.

Comparison Bradley Wang figure7 3.m: With this file it is possible to compare the energy
decay curve of coupled rooms obtained with the SEA method with results obtained with the
Bradley&Wang method.

Coupled Rooms DGL function comment.m: Calculation of energy decay curve of two
coupled rooms based on the SEA method.

Coupling Room Plate DGL function.m: This function calculates the energy decay curve
of a room that is coupled with a single plate based on SEA.

Coupling Room Plate DGL function 3plates.m: Determination of energy decay curve of
a room coupled with 3 plates.

Coupling Room Plate DGL function number plates.m: Calculation of energy decay curve
of a room coupled with an arbitrary number of plates. The number of plates is an input variable.
Can be used in cases where all the plates have the same dimensions and are made of the same
material.

Coupling Room Plate DGL function chamber setup1.m: Function to calculate the en-
ergy decay curve of reverberation chamber for setup1, 1000 Hz case.

Coupling Room Plate DGL function chamber setup1 4000.m: Function to calculate
the energy decay curve of reverberation chamber for setup1, 4000 Hz case.

Coupling Room Plate DGL function chamber setup2.m: Function to calculate the en-
ergy decay curve of reverberation chamber for setup2, 1000 Hz case.

Coupling Room Plate DGL function chamber setup1 4000.m: Function to calculate
the energy decay curve of reverberation chamber for setup2, 4000 Hz case.

Coupling Room Plate DGL function chamber setup3.m: Function to calculate the en-
ergy decay curve of reverberation chamber for setup3, 1000 Hz case.

Coupling Room Plate DGL function chamber setup3 4000.m: Function to calculate
the energy decay curve of reverberation chamber for setup3, 4000 Hz case.

Coupling Room Plate DGL function chamber setup4.m: Function to calculate the en-
ergy decay curve of reverberation chamber for setup4, 1000 Hz case.

Coupling Room Plate DGL function chamber setup4 4000.m: Function to calculate
the energy decay curve of reverberation chamber for setup4, 4000 Hz case.

damping air.m: This function calculates the damping value of air.

damping air chamber.m: Calculation of the damping of air for chapter 10. Different val-
ues for the temperature and the humidity of air as in damping air.m.
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Room decay Hallraum chamber.m: Calculation of the energy decay curve of the rever-
beration chamber, setup0.

Room decay Hallraum chamber setup1.m: Calculation of the energy decay curve of the
reverberation chamber, setup1.

Room decay Hallraum chamber setup2.m: Calculation of the energy decay curve of the
reverberation chamber, setup2.

Room decay Hallraum chamber setup3.m: Calculation of the energy decay curve of the
reverberation chamber, setup3.

Room decay Hallraum chamber setup4.m: Calculation of the energy decay curve of the
reverberation chamber, setup4.

Inputfile energy decay curve coupled rooms.m: Inputfile for calculation of energy decay
curve of coupled rooms.

Inputfile energy decay curve room plate.m: Inputfile for calculation of energy decay curve
of room coupled with plate.

Inputfile energy decay curve single room.m: Inputfile for calculation of energy decay curve
of a single room.

The figures were produced with the following MATLAB files (folder: \Matlab Figures):

Room decay DGL figure7 1.m: Starting this file Fig. (7.1) can be reproduced.

Room decay DGL figure7 2.m: Starting this file Fig. (7.2) can be reproduced.

Room decay DGL figure7 3.m: Starting this file Fig. (7.3) can be reproduced.

Room decay DGL comparison empty figure7 5.m: Starting this file Fig. (7.5) can be
reproduced.

Room decay DGL comparion empty figure7 6.m: Starting this file Fig. (7.6) can be
reproduced.

Early late Bradley Wang figure8 1.m: Starting this file Fig. (8.1) can be reproduced.

Early late Bradley Wang figure8 2.m: Starting this file Fig. (8.2) can be reproduced.

Comparison Bradley Wang figure8 3.m: Starting this file Fig. (8.3) can be reproduced.

Comparison Bradley Wang figure8 4.m: Starting this file Fig. (8.4) can be reproduced.

Room Room DGL comparison figure8 5.m: Starting this file Fig. (8.5) can be repro-
duced.
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Room Room DGL comparison figure8 6.m: Starting this file Fig. (8.6) can be repro-
duced.

Room Room DGL comparison figure8 7.m: Starting this file Fig. (8.7) can be repro-
duced.

Room Room DGL comparison figure8 8.m: Starting this file Fig. (8.8) can be repro-
duced.

Room Room DGL comparison figure8 9.m: Starting this file Fig. (8.9) can be repro-
duced.

Radiation factor figure9 1.m: Starting this file Fig. (9.1) can be reproduced.

Radiation factor figure9 1.m: Starting this file Fig. (9.1) can be reproduced.

Coupling Room plate DGL main inputbox comparison figure9 2.m: Starting this file
Fig. (9.2) can be reproduced.

Coupling Room plate DGL main inputbox comparison figure9 3.m: Starting this file
Fig. (9.3) can be reproduced.

Coupling Room plate DGL main inputbox comparison figure9 4.m: Starting this file
Fig. (9.4) can be reproduced.

Coupling Room plate DGL main inputbox comparison figure9 5.m: Starting this file
Fig. (9.5) can be reproduced.

Room decay Hallraum chamber figure10 3.m: Starting this file Fig. (10.3) can be re-
produced.

Room decay Hallraum chamber figure10 4.m: Starting this file Fig. (10.4) can be re-
produced.

Room decay Hallraum chamber figure10 5.m: Starting this file Fig. (10.5) can be re-
produced.

Room decay Hallraum chamber figure10 6.m: Starting this file Fig. (10.6) can be re-
produced.
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