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1 Introduction

Loudspeaker models are getting more complex and try to model more occurring physical e�ects.
One of these e�ects is viscoelastic creep which a�ects polymers of the loudspeaker suspension. The
excursion of the membrane gets time and frequency dependent and an increase of the excursion
at low frequencies occurs. This can lead to problems especially in microspeakers due to place
limitations and the lack of a spider. Models considering creep usually work in frequency domain
and therefore are restricted to linearity. To be able to consider nonlinearities like the force-factor
BL we make our calculations in time domain.

We start with a traditional loudspeaker model and replace the spring with a Standard Linear Solid
model to describe the viscoelastic creep. Then we send stepped sine excitations into the system,
calculate the di�erential equation and solve it numerically with the MATLAB ode-solver. After
calculating the maximum excitation in steady state we can observe the increase at low frequencies.
This concept can be improved and expanded upon further.
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2 Traditional loudspeaker model

The traditional loudspeaker model is a linear model which represents the main properties of a
loudspeaker. The most common type of loudspeakers is the electrodynamic loudspeaker. Its goal
is to produce a sound signal from an electrical signal. You can split the model into three parts
which represent the properties of the loudspeaker in the electrical, the mechanical and the acoustic
domain. Usually you can merge the distinct parts into a single model, completely represented in
the electrical domain. This brings the advantage that you can use well known methods of electrical
circuit theory to analyse this model. The traditional loudspeaker model is represented by a set
of parameters which are known as the Thiele-Small-parameters. These parameters describe the
model in a way that the parameters represent real physical values like the mass of the membrane
or the electrical impedance of the voice-coil.

2.1 Electrodynamic loudspeaker

The electrodynamic loudspeaker is the most common type of loudspeakers. It is an electroacoustic
transducer which transforms an electrical signal into a sound signal.

A typical electrodynamic loudspeaker consists of a membrane which is �xed on the basket over
the suspension. The voice-coil is attached to the membrane and is arranged in a gap between a
permanent magnet. There the voice-coil can move in an axial way. The electrical signal is induced
into the voice-coil, which creates a magnetic �eld that interacts with the magnetic �eld of the
permanent magnet. This produces a force which moves the voice-coil and the attached membrane
to reproduce sound out of the electrical signal.

Figure 1: Basic components of an electrodynamic loudspeaker. [5]
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In big loudspeakers there are normally two suspensions. One, the surround, which links the mem-
brane to the basket and a second, the spider, which constrains the voice-coil to move only in one
axis. The membrane, also called diaphragm, is usually made out of paper or plastic materials and
has the shape of a cone. The design of a loudspeaker is traditionally circular. In �gure 1 you can
see a typical structure of an electrodynamic loudspeaker.

Smaller variants of loudspeakers, also called microspeakers, are used in small electronic devices
like mobile phones or handheld computers. To minimize the size of a microspeaker there are
some restrictions to the materials and the soundquality. The materials have to be light but
also robust. Therefore the basket and the membrane are generally made of plastic materials. In
microspeakers the spider is omitted because of the lack of space inside the microspeaker. This leads
to some di�culties in the axial alignment of the voice-coil. Nowadays the outer shape of a lot of
microspeakers is rectangular, for easier integration into electronic devices. Microspeakers are often
driven below their resonance frequency; this region is dominated by the suspension compliance
and viscoelastic e�ects are relevant to consider [3]. This also generates new challenges for the
designers. In �gure 2 you can see a typical structure of an electrodynamic microspeaker.

Figure 2: Basic components of an electrodynamic microspeaker. [5]
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2.2 Thiele-Small-Parameters

An electrodynamic loudspeaker can be described by a set of parameters which represent the main
characteristics of the behaviour of a loudspeaker. This parameters tend to represent real physical
values like the mass of the membrane or the electrical inductance of the voice-coil. Thiele and Small
have found a minimum set of parameters which describe a loudspeaker properly [12]. The Thiele-
Small-Parameters are measured at small signal level. A list of these Thiele-Small-Parameters can
be seen in Table 1.

Le Electrical inductance of the voice coil [H]
Re Electrical resistance [Ohm]
BL Force-factor [Tm]
Mms Mass of the membrane + coil + acoustic load [kg]
Cms Compliance of the suspension [m/N]
Rms Mechanical resistance [Ns/m]
Sd Projected area of the membrane [m²]
f0 Resonance frequency [Hz]
Vas Equivalent compliance volume [m³]
Qes Electrical quality factor
Qms Mechanical quality factor
Qts Total quality factor

Table 1: List of the Thiele-Small-Parameters.

The electrical inductance Le is indicated at 1 kHz because it is frequency dependent. The mass
Mms is compound of the mass of the membrane, the mass of the voice coil and the acoustic mass
which indicates the resistance of the moving membrane in air. The equivalent compliance volume
Vas is the air volume which has the same compliance as the suspension with respect to the pro-
jected area Sd.

The Thiele-Small-Parameters describe the behaviour of the loudspeaker near the resonance fre-
quency. The aim of knowing the loudspeaker parameters is to be able to simulate the behaviour of
the loudspeaker and to simulate the properties of the membrane like position, velocity and acceler-
ation. Also one can simulate the impedance of the input and the sound output of the loudspeaker.
These parameters take also the enclosure of the loudspeaker into account.

There are several methods to measure the Thiele-Small-Parameters. One way is to measure the
input impedance of the loudspeaker. There you can see the resonance frequency and the quality
factor. With them you can calculate the position of the membrane and the missing parameters.
Another way is to measure the velocity or position of the membrane and calculate the parameters
out of them. This measurement can be done in a vacuum surrounding to neglect the in�uence of
the acoustic mass.
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2.3 Equivalent network of the traditional loudspeaker model

The traditional model uses the Thiele-Small-Parameters to describe a loudspeaker [13, 8]. The
model consists of three parts. These parts represent the characteristics in the electrical, mechani-
cal and acoustic domain. The parameters are held linear to be able to calculate the in�uences of
the di�erent domains separately.

The membrane is modelled with three mechanical components. A mass m, a spring (k) and a
dashpot Rm which are in parallel connection. In �gure 3 you can see the mechanical setting of the
membrane.

Figure 3: Mechanical model of the membrane.

The electrical components consist of a voltage source u, an electrical resistance Re and an induc-
tance Le. We are interested in the low frequency behaviour of the loudspeaker, therefore we can
neglect the in�uence of the inductance Le because it only in�uences the high frequency range. The
simpli�ed model of the electrical voltage source can be seen in �gure 4.

Figure 4: Simpli�ed model of the electrical part.

The acoustic components consist of the acoustic load ma, which is the mass of the moving air, and
the acoustic radiation resistance Ra. They can be neglected if we assume that we simulate the
loudspeaker in a vacuum environment. This method is often used when measuring the excursion.
Someone can then calculate the acoustic components by comparing a measurement in vacuum to
a measurement in air-�lled surroundings.
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We can transform the mechanical components into the electrical domain and vice versa by using
the force-current (FI)-analogy. Therefore we use the transformation constant BL which is called
the force-factor and describes what force gets imposed on the current carrying voice coil by the
magnet. It depends on the magnetic �eld and the length of the current carrying conductor.

L =
BL2

k
; C =

m

BL2
; R =

BL2

Rm

; u2 = BL · v2 = BL · dx2
dt

(1)

To get an equivalent network in the electrical domain for the mechanical and electrical components,
seen in �gure 5, we use the force-current analogy. The consideration of the acoustic components
can be avoided by assuming vacuum environment.

Figure 5: Equivalent network in the electrical domain.

2.4 Problems with the traditional loudspeaker model

There are a few restrictions to the traditional model which make this model only valid under
distinct conditions. The traditional model is a simpli�ed model which takes only the main char-
acteristics of loudspeaker behaviour into account. One main restriction is the linearity of the
parameters. To be able to separate the model into the electrical, mechanical and acoustic domain
it has to be assumed that the parameters are in a linear range. This is only a good approximation
for small signal levels. For large signal levels the loudspeaker can have a nonlinear behaviour.
Some of the parameters, which are assumed linear, are actually nonlinear. Examples for this are
the force-factor BL and the spring constant k [2, 10].

Another problem is that the traditional model is only of the order two. It is a simple linear
model with as few parameters as possible but there are e�ects which are not represented with this
model. The traditional model is focused on describing the region near the resonance frequency.
With the model order two you can only model a single resonance and no other shapes of the
frequency response. To be able to model for example the creep e�ect, which causes an increase of
the excursion in the low frequency range (see �gure 18, 19), you have to increase the order of your
model (see chapter 4.3).
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3 Viscoelasticity and Creep

Viscoelasticity is a material property, which combines the properties from Elasticity and Viscosity.
The relevant physical quantities are stress and strain. The di�erent e�ects of viscoelasticity on
materials are Creep, Recovery and Relaxation. Creep is the e�ect, which is most relevant to
consider in loudspeaker design.

3.1 Stress

Stress is a physical quantity that appears inside of material. It describes the interaction of the
forces of adjacent particles to each other. The stress can be measured by the force divided by
the area on which it acts. Stress is de�ned as the average force per unit area that particles of a
material exert to their adjacent particles.

σ =
F

A
(2)

The unit of stress is newton per square meter ( N
m2 ) or Pascal (Pa). Pressure is measured in the

same units but it is de�ned di�erently. Pressure is the applied force on an area. Stress instead can
be seen as the opposite force inside the material, which withstands the applied pressure. Therefore
they have the same magnitude but an opposite sign. Pressure is used positive when it pushes and
stress is used positive when it pulls.

There are di�erent states of stress which di�er in their direction of the force to the area. There is
tension if the force is pulling apart a material. The opposite, where a material is pressed together,
is called compression. If the force is parallel instead of normal to the area, we speak from shear
stress. These states of stress can be de�ned in one dimension or in more. Then we speak of a
stress tensor, which is a matrix representation of the stresses in the di�erent dimensions.

3.2 Strain

Strain is the deformation of a material due to stress. It is a measure of the intensity of deformation
at a point. It is representing the displacement between particles in the body relative to a reference
length. Strain is a dimensionless quantity, since it is a ratio between lengths or volumes. Depending
on the direction strain can be normal strain or shear strain.
Normal strain is de�ned as:

ε =
∆L

L
=
l − L

L
(3)

Where L is the original length of a body and l is the length after deformation.
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3.3 Elasticity

Materials, which return to their initial state after being deformed, are called elastic materials.
These materials can be described by their elastic modulus and their elastic limit. Hooke's law
connects the relation between stress and strain over the elastic modulus E (Young's modulus).

σ = E · ε (4)

This relation can also be stated for a spring like:

F = k · x (5)

Where F is the implied force, x is the displacement and k is the spring constant.

If the strain is small and the deformation does not exceed the elastic limit, these equations are
linear. A low elastic modulus signi�es that the material is easy to deform.

3.4 Viscosity

A property of �uids is viscosity. It is a measure of its resistance to gradual deformation due to
stress. It also can be described through the concept of thickness for liquids. A �uid �ows, which
means particles of di�erent layers of the �uid are gliding over each other with di�erent velocities.
The thicker or more viscous a �uid is, the slower it �ows.

In the context of a �uid �owing between two parallel plates, where one is �xed and the other is
moving with a constant speed v, a di�erential expression for viscous forces is:

τ = η
∂v

∂y
(6)

where η is the viscosity factor, τ = F
A
and ∂v

∂y
is the derivative of the velocity of the �uid v with

respect to the path in direction perpendicular to the plates.

8



3.5 Viscoelasticity

Under viscoelasticity one understands the combination of elastic and viscous properties of a ma-
terial. The strain reaction to an applied stress becomes time-dependent. For linear viscoelasticity
the properties can be separated into the two components of elastic and viscous behaviour. In �gure
6 the viscoelastic properties creep and recovery are shown.

Figure 6: Viscoelastic properties creep and recovery. [7]

3.6 Creep

Creep is a phenomenon, which originates from the viscoelastic property of a material. It is a slow
continuous deformation with time. The strain of a material increases with time while a constant
stress is applied. The strain in�icted by a stress load gets time and temperature dependent [6, 4].
At room temperature materials like metals or ceramics don't creep, but some polymers do. Due to
the temperature dependency materials creep more at high temperatures, which mean temperatures
near the melting point or glasstemperature of the materials. Metals and ceramics start to creep
at temperatures about 30% to 50% of the melting temperature. In �gure 7, materials with their
di�erent melting points are shown.
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Figure 7: Melting or softening temperature of di�erent materials. [4]

Figure 6 showed an example where constant stress is applied for a limited time. There you can see
the primary and secondary stage of creep followed by a recovery phase where the stress got removed.

In �gure 8 three stages of creep are shown, which are the results of a typical creep test where a
material gets loaded with a constant stress for a long time while maintaining the same temperature.
After applying a constant stress to a material it reacts with an initial elastic jump in the strain.
The strain rises fast in the primary stage, it continues rising linearly in the secondary stage and
increases rapidly again in the tertiary stage. The primary stage is characterized by the strain
hardening of the material. In the second stage the strain hardening and the thermal softening get
in balance; therefore the creep rate stays constant. In the tertiary stage the material gets weaker
until it reaches a �nal limit or it breaks.

Figure 8: The three stages of creep. [4]
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By appling an oscillatory stress to a linearly viscoelastic material the strain response will be an
oscillation at the same frequency as the stress but lagging behind by a phase angle δ, see �gure 9.
The sti�ness of a material gets dependent on the application rate of the in�icted stress load.

Figure 9: Oscillating stress σ, strain ε and phase lag δ. [7]

3.7 Creep in loudspeakers

Creep is depending on the material properties. Some polymers are able to creep at room tempera-
ture, while metals need a high temperature for creeping. In loudspeakers the suspension is normally
made out of polymers or compound layers of polymers. Therefore creep can be considered relevant
[1]. Due to the temperature dependency, the creep e�ect can become more problematic during long
operations of a loudspeaker because of heat development of the electronic device. Loudspeakers
are generally driven with periodic signals, where the membrane is de�ected in both directions (see
�gure 9).

For low frequencies the displacement of the membrane rises. The force gets implied slowly so that
the material has less instantaneous resistance to the force. For high frequencies the material has a
higher inertia and the direction of the force changes so rapidly that the creep e�ect does not come
into account.

A higher displacement can lead to problems because the maximal possible displacement is one of
the limiting factors of a loudspeaker. The reasons are place restrictions due to the enclosure of
the speaker, microspeakers are often used beneath a cover, and the nonlinear e�ects, which occur
with high displacements. But high displacement is needed for a high sound pressure level of the
speaker.
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4 Loudspeaker models including creep

This section is about three di�erent models to describe the viscoelastic creep e�ect. There are
two models consisting of an elastic spring and a viscous damper, the Maxwell model, where the
components are in series, and the Kelvin-Voigt model, where the components are in parallel. A
combination of these two models is the often used Standard Linear Solid (SLS) model. The SLS
model is able to model the viscoelastic creep e�ect in a simple way.

4.1 Maxwell model

The Maxwell model for a material consists of an elastic spring and a viscous damper in series. The
two components are assumed to react ideally, like a Hookean spring and a Newtonian damper. In
�gure 10, the arrangement of the components is shown.

Figure 10: Maxwell model with stress and strain curves for creep and recovery. [7]

The stress-strain relation of the spring is:

σ = E · ε (7)

The stress-strain relation of the dashpot is:

σ = η
dε

dt
(8)
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The total stress and strain can be calculated as followed:

σtotal = σspring = σdamper (9)

εtotal = εspring + εdamper (10)

To get the strain rate relation we combine equations (7), (8) and (10):

dεtotal
dt

=
dεspring
dt

+
dεdamper
dt

=
1

E

dσ

dt
+
σ

η
(11)

Where E is the elastic modulus and η is the viscosity coe�cient.

Integrating equation (11) and applying a constant stress σ0 at t = 0 leads to following equation
for creep:

ε(t) =
σ0
E

+
σ0
η
t (12)

A problem with this model is that it does not model creep accurately (compare �gure 6 and 10).

4.2 Kelvin-Voigt model

This model also consists of an elastic spring and a viscous damper, but they are connected in
parallel, like shown in �gure 11.

Figure 11: Kelvin-Voigt model with stress and strain curves for creep and recovery. [7]
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The total stress and strain can be calculated as followed:

σtotal = σspring + σdamper (13)

εtotal = εspring = εdamper (14)

Combining equations (7), (8) and (13) leads to following equation:

dε

dt
+
E

η
ε =

1

η
σ (15)

Solving this equation leads to the following form for creep under a constant stress σ0 applied at
t = 0:

ε(t) =
σ0
E

(
1 − e−

E
η
t
)

(16)

The Kelvin-Voigt model also does not describe creep and recovery accurately (compare �gure 6
and 11).
The retardation time tc = η

E
is the time at which the strain would cross the asymptotic value σ0

E

if the strain were to increase at its initial rate σ0
η
.

The stress with duration t1 can be represented by two step inputs:

σ(t) = σ0H(t) − σ0H(t− t1) (17)

H(t) is the Heavyside or unit step function and is de�ned as:

H(t) =

{
1, t ≥ 0
0, t < 0

}
(18)

The resulting response is then:

ε(t) =
σ0
E

(
1 − e−

E
η
t
)
H(t) − σ0

E

(
1 − e−

E
η
(t−t1)

)
H(t− t1) (19)

For the creep phase from 0 < t < t1 equation (16) is valid.
For the recovery phase from t > t1 following equation results:

ε(t) =
σ0
E
e−

E
η
t
(
e
E
η
t1 − 1

)
(20)
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4.3 Standard Linear Solid model (SLS)

A combination of the Maxwell and the Kelvin-Voigt model is the Standard Linear Solid model.
The model consists of two springs and a damper like shown in �gure 12. The advantage of the
SLS model is that it can be used to simulate creep and recovery accuratley (compare �gure 6 and
13). It combines properties from the Maxwell and the Kelvin-Voigt model (see �gure 13).

Figure 12: Standard Linear Solid model.

Stress and strain can be calculated similar to the previous models using equations (7), (8).
To calculate the di�erential equation from �gure 12 we start with:

σ = σ2 + σ3

ε = ε1 + ε2

We express ε2 as:

ε2 = ε− ε1 = ε− 1

E1

σ

15



Then we use this equation to express σ2 and σ3.

σ2 = E2ε2 = E2ε−
E2

E1

σ

σ3 = η
dε2
dt

= η
dε

dt
− η

E1

dσ

dt

We combine these equations to get following stress-strain relation:

σ = E2ε−
E2

E1

σ + η
dε

dt
− η

E1

dσ

dt

dε

dt
+
E2

η
ε =

E1 + E2

E1η
σ +

1

E1

dσ

dt
(21)

Solving this equation and applying a constant stress σ0 at t = 0 leads to following equation for
creep:

ε(t) =
σ0
E1

+
σ0
E2

(
1 − e−

E2
η
t
)

(22)

This equation is the superposition of the solutions for a spring (7) and the Kelvin-Voigt model
(16). To get the recovery phase we use equation (17) and (19) which results in following equation
for t > t1:

ε(t) =
σ0
E2

e−
E2
η
t
(
e
E2
η
t1 − 1

)
(23)

Figure 13: Standard Linear Solid model with stress and strain curves for creep and recovery.
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5 Implementation of the SLS model

In this section we are going to implement a practical solution for the Standard Linear Solid model
to simulate the excursion of a loudspeaker membrane. Other loudspeaker models which consider
suspension creep are usually described in frequency domain [11, 9, 3]. We want to have a model
in time domain; therefore we implement the SLS model in form of a di�erential equation. The
advantage of the representation in time domain is that we can directly calculate the time response
to a given signal (see �gure 17) and therefore are able to consider nonlinearities, like the nonlin-
earity of the force-factor BL. By using the SLS model we take the in�uence of the creep e�ect
into account. Then we describe the calculation procedure in more detail.

We begin with the derivation of the di�erential equation out of the equivalent circuit for the
traditional loudspeaker model. Then we derive the di�erential equation for the SLS model in a
direct and an indirect way. We take the nonlinearity of the force-factor BL into account and solve
the di�erential equations using the Matlab ode-solver.

5.1 Derivation of the di�erential equation of the traditional loudspeaker
model

Our goal is to simulate the excursion of the loudspeaker membrane. We are putting together a loud-
speaker model by using and simplifying the parts of the di�erent domains, described in chapter 2.3.

For the equivalent network in �gure 5 we can use Kirchho�'s current law and Kirchho�'s voltage
law to set the equations for the network. With those we can calculate a di�erential equation for
the voltage u2, which later can be transformed into the velocity v2 and displacement x2.

u = u1 + u2

i = iR + iL + iC

iR =
1

R
u2; iL =

1

L

∫
u2 dt; iC = C

du2
dt

i =
1

R
u2 +

1

L

∫
u2 dt+ Cu′2

u1 = Re · i = u− u2

i =
1

Re

u− 1

Re

u2

17



When we combine the two ways of calculating i we get following equation:

1

R
u2 +

1

L

∫
u2 dt+ Cu′2 =

1

Re

u− 1

Re

u2

Cu′2 +

(
1

R
+

1

Re

)
u2 +

1

L

∫
u2 dt =

1

Re

u

u′2 +

(
1

RC
+

1

ReC

)
u2 +

1

LC

∫
u2 dt =

1

ReC
u

Now we transform the equation partially into the mechanical domain. The mechanical parts get
transformed and the electrical parts stay in the electrical domain. For this transformation we use
the equations (1).

BL · x′′2 +

(
Rm

BL2

BL2

m
+

1

Re

BL2

m

)
BL · x′2 +

k

BL2

BL2

m
BL · x2 =

1

Re

BL2

m
u

x′′2 +

(
Rm

m
+
BL2

Rem

)
x′2 +

k

m
x2 =

BL

Rem
u (24)

We calculated a di�erential equation which describes the displacement x2 with mechanical and
electrical parameters and a voltage input signal.

5.2 Derivation of the di�erential equation of the SLS model

To be able to take the creep e�ect into account we extend the traditional loudspeaker model. We
replace the spring (k) with a spring (k1) in series with another spring (k2) parallel to a dashpot
Rm1. This structure is also known as the Standard Linear Solid (SLS) model. In �gure 14 we see
the modi�ed mechanical parts.

Figure 14: Modi�ed mechanical parts.

18



Figure 15: Combined equivalent network in electrical domain for the SLS model.

In �gure 15 we see the equivalent network in the electrical domain for the SLS model. Like with
the traditional loudspeaker model we use Kirchho�'s laws to set the equations and then calculate
a di�erential equation for the displacement x2. We start by using the nodal rule at node 2 to get
an expression for u3.

iL1 = iL2 + iR1

1

L1

∫
u3dt =

1

L2

∫
u4dt+

1

R1

u4

u3 =
L1

L2

u4 +
L1

R1

u′4 (25)

We use the mesh rule to get an expression for i and i'.

u2 = u− u1 = u−Re · i

i =
1

Re

u− 1

Re

u2

i′ =
1

Re

u′ − 1

Re

u′2

Then we use the nodal rule at node 1 to get an expression for i′L1
.

i = iL1 + iR + iC

i′L1
= i′ − i′R − i′C
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We use the expression for i′L1
and the mesh rule to get an expression for u4.

u4 = u2 − u3 = u2 − L1i
′
L1

= u2 − L1 (i′ − i′R − i′C) = u2 − L1

(
1

Re

u′ − 1

Re

u′2 −
1

R
u′2 − Cu′′2

)

We set up an equation for u2 which is dependent on u4.

u2 = u3 + u4 =
L1

L2

u4 +
L1

R1

u′4 + u4 =

(
1 +

L1

L2

)
u4 +

L1

R1

u′4 (26)

Then we combine the equations to get a di�erential equation for u2.

u2 =

(
1 +

L1

L2

)(
u2 −

L1

Re

u′ +
L1

Re

u′2 +
L1

R
u′2 + L1Cu

′′
2

)
+
L1

R1

(
u′2 −

L1

Re

u′′ +
L1

Re

u′′2 +
L1

R
u′′2 + L1Cu

′′′
2

)

L2
1C

R1

u′′′2 +

(
L1C +

L2
1C

L2

+
L2
1

R1Re

+
L2
1

R1R

)
u′′2 +

(
L1

Re

+
L2
1

L2Re

+
L1

R
+

L2
1

L2R
+
L1

R1

)
u′2 +

L1

L2

u2 = . . .

=

(
L1

Re

+
L2
1

L2Re

)
u′ +

L2
1

R1Re

u′′

u′′2 +

(
R1

L1

+
R1

L2

+
1

CRe

+
1

CR

)
u′2 +

(
R1

L1CRe

+
R1

L2CRe

+
R1

L1CR
+

R1

L2CR
+

1

L1C

)
u2 + . . .

+
R1

L1L2C

∫
u2dt =

(
R1

L1CRe

+
R1

L2CRe

)
u+

1

CRe

u′

Now we transform the equation for u2 partially into the mechanical domain like in section 5.1.

x′′′2 +

(
k1
Rm1

+
k2
Rm1

+
BL2

mRe

+
Rm

m

)
x′′2 + . . .

+

(
k1BL

2

Rm1mRe

+
k2BL

2

Rm1mRe

+
k1Rm

Rm1m
+
k2Rm

Rm1m
+
k1
m

)
x′2 +

k1k2
Rm1m

x2 = . . .

=

(
k1BL

Rm1mRe

+
k2BL

Rm1mRe

)
u+

BL

mRe

u′

(27)

We have a di�erential equation for the displacement x2.
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5.3 Alternative derivation of the di�erential equation of the SLS model

There is an alternative way to derive the displacement x2, where we �rst �nd a di�erential equation
for x4 and then calculate x2 afterwards. This way we can solve a di�erent di�erential equation,
which improves the calculation time by a third to a half. We use the same equivalent network
from �gure 15. As in section 5.2 we start by getting expressions for u3 [equation(25)] and u2
[equation(26)].
This time we are looking for two expressions for i.

i = iL1 + iR + iC =
1

L1

∫
u3dt+

1

R
u2 + Cu′2

i =
1

L1

∫ (
L1

L2

u4 +
L1

R1

u′4

)
dt+

1

R

[(
1 +

L1

L2

)
u4 +

L1

R1

u′4

]
+ C

[(
1 +

L1

L2

)
u′4 +

L1

R1

u′′4

]

i =
CL1

R1

u′′4 +

(
L1

RR1

+ C +
CL1

L2

)
u′4 +

(
1

R1

+
1

R
+

L1

L2R

)
u4 +

1

L2

∫
u4dt

i =
1

Re

u− 1

Re

u2 =
1

Re

u− 1

Re

[(
1 +

L1

L2

)
u4 +

L1

R1

u′4

]
=

1

Re

u−
(

1

Re

+
L1

L2Re

)
u4 −

L1

R1Re

u′4

We combine the two expressions to get a di�erential equation for u4.

CL1

R1

u′′4+

(
L1

RR1

+ C +
CL1

L2

+
L1

R1Re

)
u′4+

(
1

R1

+
1

R
+

L1

L2R
+

1

Re

+
L1

L2Re

)
u4+

1

L2

∫
u4dt =

1

Re

u

u′′4 +

(
1

CR
+
R1

L1

+
R1

L2

+
1

CRe

)
u′4 +

(
1

CL1

+
R1

RCL1

+
R1

RCL2

+
R1

CL1Re

+
R1

CL2Re

)
u4 + . . .

+
R1

CL1L2

∫
u4dt =

R1

CL1Re

u

Now we transform the equation for u4 partially into the mechanical domain like in section 5.1.

x′′′4 +

(
Rm

m
+

k1
Rm1

+
k2
Rm1

+
BL2

mRe

)
x′′4 + . . .

+

(
k1
m

+
Rmk1
Rm1m

+
Rmk2
Rm1m

+
BL2k1
Rm1mRe

+
BL2k2
Rm1mRe

)
x′4 +

k1k2
Rm1m

x4 =
BLk1

Rm1mRe

u

(28)

We have a di�erential equation for the displacement x4. To calculate the displacement x2 we use
equation (26).

x2 =

(
1 +

k2
k1

)
x4 +

Rm1

k1
x′4 (29)
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5.4 Force-factor BL and its nonlinearity

The force-factor BL is the transformation constant to transform an electrical variable into a me-
chanical or vice versa. It derives from the Lorentz force and its application in the example of the
behaviour of an electrical wire inside a magnetic �eld, where the force F on the wire can be de-
scribed by the current I through the wire times the magnetic �eld B times the length L of the wire.
In the linear case BL is assumed to be a constant. However BL is dependent on the displacement
of the loudspeaker membrane and therefore the di�erential equation becomes nonlinear.

We take a look at a measured BL curve in �gure 16. We are interested in the region near the
resonance frequency because that is the region with the highest displacement. To approximate the
BL curve we use a polynomial �tting. If we take the region from -0.4 mm to 0.4 mm into account,
which is a reasonable working point for a microspeaker, a second order polynomial is su�cient.

Figure 16: Comparison between measured and approximated BL curve.

If we describe BL as a polynomial of second order, which is dependent on the displacement x2 we
get an equation like:

BL (x2) = c0 + c1x2 + c2x
2
2 (30)

This representation of BL can be inserted into the di�erential equation (24) of the traditional
loudspeaker model and equation (27) of the SLS model.
To get an equation where BL depends on x4 we use formula (30) and (29).

BL(x4) = c0 + c1

[(
1 +

k2
k1

)
x4 +

Rm1

k1
x′4

]
+ c2

[(
1 +

k2
k1

)
x4 +

Rm1

k1
x′4

]2
This representation of BL can be inserted into the di�erential equation (28) of the alternative SLS
model.

When we calculate the parameters from the approximated curve seen in �gure 16, we get:
c2 = −1.01; c1 = −0.08; c0 = 0.876;
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5.5 Solving the di�erential equations with MATLAB ode-solver

In literature there are a few approaches for creep models in frequency domain. Our approach is
to solve the di�erential equation for the system in time domain. Therefore we use the MATLAB
ode-solver. �ode� stands for ordinary di�erential equation.

The Matlab ode-solver solves problems of the form:

dx1
dt

= f1 (x1, x2, x3, ..., t)

dx2
dt

= f2 (x1, x2, x3, ..., t)

dx3
dt

= f3 (x1, x2, x3, ..., t)

...

~x =


x1
x2
x3
...

 ~f =


f1
f2
f3
...


d~x

dt
= ~f (t, ~x)

We have to write the di�erential equation in the form of a system of di�erential equations.

For the traditional loudspeaker model the di�erential equation (24) is:

x′′ +

(
Rm

m
+
BL2

Rem

)
x′ +

k

m
x =

BL

Rem
u(t)

This transformed into a system of di�erential equations is:

x1 = x; x2 = x′

x3 = x′′ = −
(
Rm

m
+
BL2

Rem

)
x2 −

k

m
x1 +

BL

Rem
u(t) = −b · x2 − a · x1 + d · u(t)

d

dt

[
x1
x2

]
=

[
x2

−b · x2 − a · x1 + d · u(t)

]
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For the SLS model the di�erential equation (27) is:

x′′′ +

(
k1
Rm1

+
k2
Rm1

+
BL2

mRe

+
Rm

m

)
x′′ +

(
k1BL

2

Rm1mRe

+
k2BL

2

Rm1mRe

+
k1Rm

Rm1m
+
k2Rm

Rm1m
+
k1
m

)
x′ + . . .

+
k1k2
Rm1m

x =

(
k1BL

Rm1mRe

+
k2BL

Rm1mRe

)
u(t) +

BL

mRe

u′(t)

This transformed into a system of di�erential equations is:

x1 = x; x2 = x′; x3 = x′′; x4 = x′′′ = . . .

= −
(
k1
Rm1

+
k2
Rm1

+
BL2

mRe

+
Rm

m

)
x3 −

(
k1BL

2

Rm1mRe

+
k2BL

2

Rm1mRe

+
k1Rm

Rm1m
+
k2Rm

Rm1m
+
k1
m

)
x2 − . . .

− k1k2
Rm1m

x1 +

(
k1BL

Rm1mRe

+
k2BL

Rm1mRe

)
u(t) +

BL

mRe

u′(t) = −c · x3 − b · x2 − a · x1 + d · u(t) + e · u′(t)

d

dt

 x1
x2
x3

 =

 x2
x3

−c · x3 − b · x2 − a · x1 + d · u(t) + e · u′(t)


For the alternative route of the SLS model over x4 the di�erential equation of x4 (28) is:

x′′′ +

(
Rm

m
+

k1
Rm1

+
k2
Rm1

+
BL2

mRe

)
x′′ +

(
k1
m

+
Rmk1
Rm1m

+
Rmk2
Rm1m

+
BL2k1
Rm1mRe

+
BL2k2
Rm1mRe

)
x′ + . . .

+
k1k2
Rm1m

x =
BLk1

Rm1mRe

u(t)

This transformed into a system of di�erential equations is:

x1 = x; x2 = x′; x3 = x′′; x4 = x′′′ = . . .

= −
(
Rm

m
+

k1
Rm1

+
k2
Rm1

+
BL2

mRe

)
x3 −

(
k1
m

+
Rmk1
Rm1m

+
Rmk2
Rm1m

+
BL2k1
Rm1mRe

+
BL2k2
Rm1mRe

)
x2 − . . .

− k1k2
Rm1m

x1 +
BLk1

Rm1mRe

u(t) = −c · x3 − b · x2 − a · x1 + d · u(t)

d

dt

 x1
x2
x3

 =

 x2
x3

−c · x3 − b · x2 − a · x1 + d · u(t)


We use the ode15s-solver, which is a variable-order solver based on the numerical di�erentiation
formulas of order 1 to 5. It is well suited for equations where the solution changes slowly. For our
equations it works appropriately.
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5.6 Calculation Procedure

Here we describe the calculation procedure to simulate the excursion curve of the loudspeaker
membrane.

We use a sine function for the excitation signal of the simulation. For every frequency we calculate
the output of the simulation from an input sine function of the corresponding frequency. The
frequencies are in the range from 10 Hz to 1000 Hz using a resolution of 100 frequency points in a
logarithmic spacing. We use an amplitude of 1 Volt peak value and a 1 second long signal.

The parameters for the traditional loudspeaker model we set to:
Re = 7 Ω; m = 8.6e− 05 kg; k = 1187 N/m; Rm = 0.09 Ns/m; BL = 0.876 Tm
For the SLS model the paramater k gets substituted with the parameters:
Rm1 = 4 Ns/m; k1 = 1110 N/m; k2 = 2700 N/m;
The parameter Rm gets changed to Rm = 0.074 Ns/m.

For the traditional loudspeaker model those are the Thiele-Small parameters. The parameters of
the SLS model have no direct physical representation. We choose these parameters freely. For the
nonlinear force-factor BL we use the coe�cients, which were calculated in chapter 5.4.

Now we use the models derivated in chapter 5 to simulate the excursion. We use a sine function
with one frequency, the parameters of the loudspeaker models and the coe�cients of BL and put
those into the di�erential equations of the models. The di�erential equations get solved in time
domain by the MATLAB ode-solver. We get a time signal for the excursion, see �gure 17. At the
beginning of the time signal, seen in �gure 17b, we see a transient before the signal reaches steady
state. Then we calculate the maximum excitation in the steady state for this frequency. For the
alternative SLS model we get a time signal for the excursion x4 where we then calculate the overall
excursion x2 from.

(a) 331Hz (b) zoomed transient at 331Hz

Figure 17: Time signal of the excursion.
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6 Results

In this section we describe the results of the simulation. We describe the simulation with a non-
linear BL and compare it to a simulation with a constant BL.

6.1 Simulation with nonlinear BL

Figure 18 shows the results of the simulation of the excursion. The blue curve represents the
traditional loudspeaker model which has an enhancement at the resonance frequency and a �at
low frequency range. The black curve represents the SLS model, calculated the alternative way,
which has also an enhancement at the resonance frequency but also an increase at low frequency
range. The red curve represents a measured excursion curve which serves as our reference. The
traditional model is optimized to represent the region around the resonance frequency but lacks in
representing the low frequency range accurately. As can be seen, the SLS model is an improvement
to be able to represent the low frequency range.

Figure 18: Excursion comparison with nonlinear BL.

Figure 18 includes both versions of the SLS model. The paths of calculation di�er slightly but the
results are quite the same.
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6.2 Simulation with constant BL

To see the in�uence of the nonlinearity of the force-factor BL we did as well a simulation with
constant BL. In �gure 19 you can see the excitation curves of the constant BL case. The model
parameters are the same as in the nonlinear BL case but the resulting amplitudes are a bit higher.

Figure 19: Excursion comparison with constant BL.

6.3 Program code description

Filename Description

Simulation.m loudspeaker simulation for 1 model
SimulationComparison.m loudspeaker simulation comparing 3 models
TSPdatavacuum.mat contains measurement data and Thiele-Small-parameters
BLcalculation.m BL coe�cient calculation and BL �gure creation
CurveFitting.m simple curve �tting and �nding of parameters

Table 2: List of program �les.
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7 Conclusions

Suspension creep is quite complex to model due to its dependency on time, excursion and tempera-
ture. This project is just a �rst step of including suspension creep into the traditional loudspeaker
model. By calculating the simulation in time domain it is possible to include nonlinearities like the
force-factor BL. In chapter 6 it was shown that the SLS model is able to improve the simulation
in the low frequency range. The alternative SLS model improves the calculation time by a third
to a half by numerically solving a di�erent di�erential equation.

Next steps in building upon the presented model are advanced parameter estimation and curve
�tting. To analyse the nonlinear behaviour further, an examination of the total harmonic distor-
tion (THD) is advised. It is expected that with higher input signals the excursion and therefore
the nonlinearities would increase. In this project a microspeaker was used for the measurements,
therefore it could be interesting to look into the di�erence in suspension creep compared to a
standard sized speaker.

This project introduced an alternative way of simulating suspension creep in time domain to be
able to consider nonlinearities.
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