
PhD Thesis

Probabilistic Methods for
Resource Efficiency in Machine Learning

Dipl.-Ing. Wolfgang Roth, BSc

doctoral thesis
to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to
Graz University of Technology

Austria

Supervisor and First Assessor/Examiner:
Univ.-Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

Signal Processing and Speech Communication Laboratory
Graz University of Technology

Second Assessor/Examiner:
Assoc.Prof. Dr. Boris Flach
Department of Cybernetics

Czech Technical University in Prague

Graz, July 2021

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present doctoral thesis.

date (signature)

Probabilistic Methods for Resource Efficiency in Machine Learning

Acknowledgements

I would like to thank my supervisor Franz Pernkopf for guiding me through my scientific develop-
ment in the past six years. Especially in times of moderate scientific success, your motivational
skills were vital for me to finally gain a foothold in the scientific world. I appreciate the scien-
tific freedom that you gave me, which allowed me to discover many of the interesting topics of
machine learning.
I also want to thank Robert Peharz for offering me the opportunity to visit the CBL lab in

Cambridge and to see something else besides the halls of the SPSC lab. This research stay
definitely contributed a lot to my positive development both as a researcher and as a person.
I also want to take the opportunity to express my belated gratitude to you and to Sebastian
Tschiatschek for advising me some years ago when I worked on my master’s thesis, where I
forgot to officially acknowledge your support. In hindsight, I believe it is in large parts due to
both of you that I actually decided to do a PhD.
I really enjoyed the past years working at the SPSC lab, which is—besides my very interesting

research topic—largely due to the many nice people who work(ed) there. Being fully aware
that I run the risk of missing important people, I want to particularly thank Alex, Christian
K., Christian T., Christoph, Elmar, Erik, Florian, Harald, Jamilla, Johanna, Johannes, Josef,
Matthias, Markus, Martin T., Martin H., Michi, Sean, Stefan, Truc, and Vlad for sharing
coffee breaks, having interesting discussions about research and life, and being exceptionally
nice people.
I thank my family, especially my parents, for their endless support in everything I do. You

made it possible that I am now close to receiving my PhD and that I have a beautiful life. I
really appreciate that you always welcome me at home, allowing me to escape from work and
recharge my batteries in the place where I grew up.
Finally, my deepest gratitude goes to my own little family, Anna and Valentina. Thank you,

Anna, for always having an open ear and listening to my more or less interesting stories about
my work, research, and all the other things that bother me from time to time. You provided the
necessary support during the long period of writing this thesis and it is in large parts due to you
that I could eventually finish it (especially since Valentina and COVID-19 have arrived almost
simultaneously which made life in general an interesting challenge). Thank you, Valentina, for
your smile in times when this thesis made only slow progress. That kept me motivated and
enabled me to finally get it done.

– V –

Probabilistic Methods for Resource Efficiency in Machine Learning

Abstract

Deep neural networks (DNNs) have gained substantial attention in the past decade. A key factor
for many of their recent success stories is the availability of increasing hardware capabilities that
have enabled the training of ever-growing network architectures. As a result, the computational
requirements of the resulting DNNs are often too high, preventing their use in many interest-
ing real-world applications that must be operated on resource-constrained devices with limited
memory, computation power, and battery capacity.
This thesis is dedicated to methods that improve the computational efficiency of machine

learning models with a particular focus on DNNs. Our contributions are probabilistic in nature
and closely related to Bayesian inference techniques. Probabilistic methods have the advantage
that they offer a principled approach to obtaining prediction uncertainties. Furthermore, it
is shown that probabilistic methods provide an effective means of converting combinatorial
optimization problems into continuous ones that are easier to optimize.
The thesis is divided into two parts. The first part provides a thorough overview of the

relevant background on supervised learning, deep neural networks, and Bayesian inference, and
continues with an extensive overview on current state-of-the-art methods that improve resource
efficiency in deep learning. The second part presents three individual contributions along with
extensive experiments showing the effectiveness of the presented methods.
The first contribution is closely related to variational inference and considers weight and

activation quantization in DNNs. This reduces the memory footprint of DNNs and enables
faster predictions at test-time. We propose to learn discrete weights and activations by learning
a distribution over the weights. This is accomplished by propagating distributions through the
network using a central limit argument and propagating Gaussians through common building
blocks and nonlinear activation functions. Once the weight distribution has been learned, a
discrete-valued DNN is inferred by either taking its most probable value or by sampling from it.
The second contribution is concerned with weight sharing in Bayesian DNNs to reduce the

memory footprint of storing a large ensemble of DNNs. The weight sharing is obtained by
introducing a Dirichlet process prior on top of the weight prior. A sampling based inference
scheme is presented that alternates between sampling assignments of weights to connections
and sampling the weights themselves. Several algorithmic techniques are presented to overcome
computational challenges in order to obtain a tractable algorithm.
The third contribution complements our discussion with an outlook on how methods for

improving the resource efficiency of DNNs can be transferred to other model classes. In par-
ticular, we present a structure learning algorithm and a quantization approach for Bayesian
network classifiers. The presented structure learning approach is closely related to differentiable
neural architecture search for DNNs. The method learns a distribution over graph structures
using continuous optimization techniques and subsequently selects the most probable structure
from that distribution. By introducing a model size penalty to the objective, the method can
be used to effectively trade off between model size and accuracy. The presented quantization
approach relies on quantization-aware training using the straight-through gradient estimator.
Quantization-aware training is currently the most widely used technique for weight and acti-
vation quantization in DNNs which allows for effective quantization with minimal changes to
existing training pipelines. In extensive experiments, we contrast quantized small-scale DNNs
and Bayesian network classifiers and show that both model classes offer benefits in different
regimes of computational efficiency and accuracy.

– VII –

Probabilistic Methods for Resource Efficiency in Machine Learning

Contents

Statutory Declaration III

Acknowledgements V

Abstract VII

1 Introduction 1
1.1 Scope . 2
1.2 Contributions . 3
1.3 Outline . 6
1.4 Symbols and Notation . 7

2 Machine Learning and Deep Neural Networks 11
2.1 Supervised Learning . 11

2.1.1 Training and Loss Function Minimization 12
2.1.2 Gradient-Based Optimization . 15
2.1.3 Automatic Differentiation . 17
2.1.4 The Straight-Through Gradient Estimator 22

2.2 Feed-Forward Deep Neural Networks . 23
2.2.1 The Basic Layout of Deep Neural Networks 24
2.2.2 Training Deep Neural Networks . 27
2.2.3 Batch Normalization . 30
2.2.4 Dropout . 32

2.3 A Brief History of Deep Learning Architectures 34
2.3.1 AlexNet . 34
2.3.2 VGGNet . 35
2.3.3 InceptionNet . 35
2.3.4 ResNet . 35
2.3.5 DenseNet . 36
2.3.6 EfficientNet . 37

3 Bayesian Deep Learning 39
3.1 Bayesian Inference . 39

3.1.1 Example: The Exponential Family and Conjugate Priors 41
3.1.2 Bayesian Networks . 42

3.2 Approximate Bayesian Inference . 44
3.2.1 Maximum Likelihood and Maximum A Posteriori Estimation 44
3.2.2 Laplace’s Method . 46
3.2.3 Variational Inference . 47
3.2.4 Sampling Methods . 50

3.3 Bayesian Deep Neural Networks . 57
3.3.1 Linearization of the Network Output . 59
3.3.2 The Probabilistic Forward Pass . 60

3.4 Bayesian Neural Networks Using Variational Inference 63
3.4.1 A Closed-Form Approximation Using the Probabilistic Forward Pass . . . 64
3.4.2 Optimization Using Monte Carlo Gradients 65
3.4.3 The Log-Derivative Trick . 66
3.4.4 The Reparameterization Trick . 68
3.4.5 The Gumbel-Softmax Approximation . 70

– IX –

Probabilistic Methods for Resource Efficiency in Machine Learning

3.5 Bayesian Neural Networks Using Sampling . 72
3.5.1 Stochastic Gradient Langevin Dynamics 72
3.5.2 Stochastic Gradient Hamiltonian Monte Carlo 73

4 Resource-Efficient Deep Neural Networks 75
4.1 Quantized Neural Networks . 76

4.1.1 Early Quantization Approaches . 76
4.1.2 Quantization-Aware Training . 77
4.1.3 Bayesian Approaches for Quantization . 79

4.2 Network Pruning . 81
4.2.1 Unstructured Pruning . 81
4.2.2 Structured Pruning . 82
4.2.3 Bayesian Approaches for Network Pruning 83
4.2.4 Dynamic Network Pruning . 83

4.3 Structural Efficiency in Deep Neural Networks 83
4.3.1 Weight Sharing . 84
4.3.2 Knowledge Distillation . 84
4.3.3 Special Matrix Structures . 86
4.3.4 Manual Architecture Design . 86
4.3.5 Neural Architecture Search (NAS) . 88

5 Learning Discrete-Valued Neural Networks Using Weight Distributions 91
5.1 Training with Discrete Weight Distributions . 92

5.1.1 The Probabilistic Loss . 92
5.1.2 Relation to Variational Inference . 94
5.1.3 Optimizing the Probabilistic Loss . 94

5.2 Model Details . 96
5.2.1 Model Layout . 96
5.2.2 Batch Normalization for Gaussian Distributions 97
5.2.3 Max Pooling for Gaussian Distributions 98
5.2.4 Parameterization and Initialization of Weight Distributions 99

5.3 Experiments . 100
5.3.1 Dataset Setups . 101
5.3.2 Classification Results . 102
5.3.3 Straight-Through Gumbel Estimator and Probabilistic Forward Pass . . . 104
5.3.4 Different Max Pooling Methods . 105
5.3.5 The Influence of Parameter Initialization and Dropout 106
5.3.6 The Influence of the Distribution Parameterization 108
5.3.7 The Influence of Batch Normalization . 108
5.3.8 Model Averaging . 109

5.4 Discussion . 112
5.4.1 Limitations and Future Work . 113

6 Weight Sharing Using Dirichlet Processes 115
6.1 Dirichlet Processes: A Distribution over Distributions 116

6.1.1 Dirichlet Process Mixtures . 117
6.1.2 Bayesian Inference for Dirichlet Process Mixtures 119

6.2 Dirichlet Process Neural Networks . 122
6.2.1 Posterior Inference in Dirichlet Process Neural Networks 123
6.2.2 Computational Tricks and Inference Complexity 125

6.3 Experiments . 127
6.3.1 Classification Results . 128

– X –

Probabilistic Methods for Resource Efficiency in Machine Learning

6.3.2 Classification Results with Stochastic Gradient MCMC 129
6.3.3 Regression Results . 130
6.3.4 Reducing the Number of Weights . 130
6.3.5 Benefit over Random Weight Sharing . 131
6.3.6 Running Time Experiments . 131
6.3.7 Different Interpolation Methods . 131
6.3.8 Influence of the Discretization Parameter 132

6.4 Discussion . 132
6.4.1 Limitations and Future Work . 133

7 Resource-Efficient Bayesian Network Classifiers 135
7.1 Bayesian Network Classifiers . 136

7.1.1 Naïve Bayes and Tree-Augmented Naïve Bayes (TAN) Structures 137
7.1.2 Hybrid Generative-Discriminative Training 138
7.1.3 Structure Learning for Bayesian Networks 139
7.1.4 Relation between Bayesian Network Classifiers and Deep Neural Networks 140

7.2 Differentiable TAN Structure Learning . 141
7.2.1 The Structure Learning Loss . 141
7.2.2 Minimizing the Structure Learning Loss 142
7.2.3 Model-Size-Aware TAN Structure Learning 143

7.3 Parameter Quantization for Bayesian Network Classifiers 143
7.3.1 Quantization-Aware Bayesian Network Classifiers 143
7.3.2 Quantization-Aware Deep Neural Networks 144

7.4 Structure Learning Experiments . 145
7.4.1 Classification Results . 146
7.4.2 Heuristic Structures for Image Data . 146
7.4.3 Influence of the Feature Ordering and Parent Subsets 148
7.4.4 Recovering the Chow-Liu Structure . 148
7.4.5 Model-Size-Aware TAN Structure Learning 148

7.5 Quantization Experiments . 150
7.5.1 Fixed Parameter Memory Budget . 151
7.5.2 Fixed Number of Operations Budget . 153
7.5.3 Quantization for BN Classifiers . 153
7.5.4 Comparing Bayesian Network Classifiers and Deep Neural Networks . . . 154

7.6 Discussion . 156
7.6.1 Limitations and Future Work . 157

8 Conclusions and Outlook 159
8.1 Limitations and Future Work . 161

9 List of Publications 163

A Datasets 165
A.1 MNIST . 165
A.2 Variants of MNIST . 165
A.3 Cifar-10 and Cifar-100 . 166
A.4 SVHN . 166
A.5 USPS . 166
A.6 UCI Datasets for Classification . 166

A.6.1 Letter . 166
A.6.2 Satimage . 168

– XI –

Probabilistic Methods for Resource Efficiency in Machine Learning

A.7 UCI Datasets for Regression . 168
A.7.1 Abalone . 168
A.7.2 Boston Housing . 168
A.7.3 Concrete Compressive Strength . 168
A.7.4 Combined Cycle Power Plant . 168
A.7.5 Wine Quality . 168

B Useful Calculations 169
B.1 Full Covariance Gaussian Approximation of the Activation Distribution 169
B.2 Expectation of a Quadratic Form with respect to a Gaussian 170
B.3 Approximating the Logistic Sigmoid by a Gaussian CDF 170
B.4 Approximating the Squared Logistic Sigmoid by a Logistic Sigmoid 171
B.5 Convolving the Logistic Sigmoid with a Gaussian 171
B.6 Convolving the Squared Logistic Sigmoid with a Gaussian 172
B.7 Convolving the (Squared) Hyperbolic Tangent with a Gaussian 172
B.8 Sampling from a Binary Gumbel-Softmax Distribution 173

C List of Acronyms 175

– XII –

Probabilistic Methods for Resource Efficiency in Machine Learning

1
Introduction

Machine learning is nowadays at the core of many systems that simulate intelligent behavior.
Consider the following motivating examples that are commonly solved by machine learning tech-
niques. Distinguishing e-mails between spam and non-spam is among the prototypical examples
solved by machine learning. For surveillance applications and autonomously driving cars, de-
tecting objects in images such as faces, pedestrians, and cars is an important task. In a medical
application, detecting and highlighting patterns in MRI and CT scans is a valuable tool to assist
doctors in making a diagnosis. Automatic speech recognition, i.e., the task of transcribing raw
audio data containing speech, increasingly finds its way into our living rooms through virtual
assistants. Closely related is the task of machine translation, i.e., automatically translating
text from one language into another. The recent major breakthrough in artificial intelligence
for classical board games, namely achieving superhuman performance in the game of Go, was
possible with machine learning [1, 2].
These are just the most prominent examples and it appears that this list can be extended

indefinitely. Nevertheless, all of these examples have in common that the variety of different
patterns in the data is huge and describing them by hand-crafted rules seems hopeless. For
instance, objects in an image (e.g., cars) can be observed in varying views, lighting and weather
conditions, objects might be occluded, and other artifacts might be present in the image. How-
ever, we expect an intelligent system to be robust with respect to these variations. Rather than
devising hand-crafted application-specific rules to capture these patterns, machine learning fol-
lows a different approach. The underlying idea is to present a machine learning algorithm with
a set of training data samples along with what we expect to be the system’s output (i.e., the
target). After a so called training or learning phase, the underlying machine learning model
should be capable of predicting the target values for the training data. However, the most im-
portant point is that the model has implicitly learned to detect the important variations and
patterns in the given data which allows it to make accurate predictions for previously unseen
data—a property known as generalization. Therefore, considering machine learning as sort of
programming with data is an appropriate description.
The number of required training samples to achieve a high degree of generalization depends

on the specific application and the employed model. On the one side, the more patterns and
variations a given dataset might exhibit, the more samples are required to sufficiently cover
these patterns. On the other side, we can equip a model with certain prior knowledge such that
meaningful patterns can be extracted from relatively few data samples. One particular method
of incorporating prior knowledge is by designing hand-crafted features which are provided to the
machine learning algorithm. For instance, if we were to know that the co-occurrence of certain
words in an e-mail is highly indicative of spam, we could extend our input data by a binary
variable (a binary feature) detecting this case. It should then be relatively easy for a machine
learning algorithm to discover by itself that a message can be safely classified as spam if this
variable is true. Intuitively, if we had not provided the model with this additional information,
it would require much more data to discover such a relationship by itself. For a long time, most
of the best performing models in various fields relied heavily on hand-crafted features, such as
manually designed edge detectors in computer vision.
The situation changed with the renaissance of deep learning. Rather than relying on hand-

– 1 –

1 Introduction

crafted features, deep neural networks (DNNs) learn to detect meaningful features during the
training procedure. This is accomplished by processing the raw input data through a series of
layers, each of which computes increasingly abstract features based on its input from preceding
layers. Interestingly, DNNs were essentially known for decades but it took a very long time until
they revealed their full potential. With the availability of very large datasets and massively
parallel hardware such as graphics processing units (GPUs), it became possible to train large
DNNs that outperform their classical counterparts relying on hand-crafted features. This became
apparent with the ImageNet challenge in 2012 which is considered as one of the most important
landmarks in deep learning. The task of this challenge was to classify images to one of 1,000
object categories using an immensely large training set containing 1.2 million images. The
winning entry of this challenge employed a DNN and outperformed all competitors relying on
traditional techniques by a large margin. Rather unsurprisingly, most competitors in subsequent
challenges relied on deep learning techniques as well and soon afterwards DNNs found their way
into many other application domains.
As it turned out, DNNs perform better if they are larger and deeper (i.e., more layers) which

has led to ever-growing architectures pushing the state of the art. While we continue to achieve
impressive results using deep learning, the resulting models are typically developed under scien-
tific conditions with access to virtually unlimited computing resources. For instance, the initial
version of AlphaGo that was able to beat a professional Go player was executed on multiple
machines with access to 1,202 central processing units (CPUs) and 176 GPUs [1]. An improved
single machine version thereof still runs on four tensor processing units (TPUs) and 44 CPUs
[3]. Another extreme example is the recently proposed language model GPT-3 which contains
an incredible 175 billion parameters [4]. These conditions often deviate from the real world
where resource-constrained devices are ubiquitous. The resulting DNNs are often too large and
cannot be deployed on devices with limited memory, computation power, and battery capacity.
Therefore, reducing the complexity of DNNs is of central importance for their practical utility.
As a result, a very active research area within deep learning is dedicated to improving resource
efficiency of DNNs.
Another highly relevant, but often overlooked, aspect is that many machine learning algo-

rithms lack providing meaningful prediction uncertainties. Such models supply us with predic-
tions but they neither provide us with any intuition on how these predictions were computed
nor do they tell us how certain they are about their predictions. Prediction uncertainties can
be naturally obtained using Bayesian inference which provides us with a solid mathematical
framework for probabilistic reasoning. The underlying idea is to introduce uncertainties over
the parameters via a parameter prior distribution. Using Bayes’ rule, the prior and a likeli-
hood function specified by the model induce a posterior distribution over the parameters. By
weighting the predictions obtained for every possible parameter combination according to the
posterior, a distribution over the outputs is obtained.
To summarize, a good model must fulfill several aspects: (i) it should be accurate, (ii) it

should be resource-efficient, and (iii) it should produce reasonable uncertainty estimates. In
the remainder of this chapter, we state the scope of this thesis and define its boundaries. We
continue with the contributions of this thesis and provide a brief outline of its content.

1.1 Scope

We have now set the stage to define the scope of this thesis. The topics covered in this thesis
lie in the intersection of resource-efficient machine learning and probabilistic modeling. More
precisely, we aim to develop probabilistic methods to improve resource efficiency in machine
learning. We particularly focus on deep learning and DNNs. The thesis is complemented with
a contribution on an inherently probabilistic model class, namely Bayesian networks (BNs).

– 2 –

1.2 Contributions

Although the presented methods have their roots in Bayesian inference, the primary focus of
this thesis remains on the resource efficiency aspect. For this reason, we sometimes deviate
from the proper Bayesian path and emphasize that we do not claim to perform proper Bayesian
inference at all times.

For instance, our contribution in Chapter 5 for quantization in DNNs employs probabilis-
tic modeling to convert a combinatorial optimization problem into a continuous optimization
problem. However, the resulting method is still closely related to variational inference, a well-
established method for approximate Bayesian inference. We note that similar interpretations
are valid for our BN structure learning approach presented in Chapter 7. In Chapter 6, on the
other hand, we consider a full Bayesian treatment of DNNs. In this work, we aim to reduce
the memory overhead inherent to sampling based inference. For this purpose, we extend the
Bayesian model with a particular probabilistic object known as Dirichlet process (DP).
There are several aspects of computational complexity that one may consider in the analysis

of resource-efficient models. The theoretical aspects are the model size, the memory require-
ments to compute predictions, and the number of operations per prediction. However, there
also exist practical aspects that strongly depend on the underlying hardware, such as latency
(i.e., the actual time to compute a prediction) and energy efficiency. The individual aspects
and the model accuracy influence each other and cannot be viewed in isolation. Furthermore,
the extent to which theoretical aspects are reflected in a practical implementation is strongly
application-specific. In this thesis, we limit ourselves to a theoretical analysis of the computa-
tional complexity and refer to the literature for practical considerations if appropriate.

1.2 Contributions

The contributions of this thesis are twofold. On the one side, we provide a comprehensive
literature overview of resource efficiency in deep learning which can be considered a contribution
by itself. On the other side, we contribute explicitly to this literature. Our contributions to
the resource efficiency literature comprise two deep learning methods and another contribution
where we transfer techniques from deep learning to a different model class, namely BN classifiers.

Literature overview on resource-efficient deep neural networks: The literature on re-
source efficiency in deep learning is subject to an enormous growth and the developed techniques
are very diverse. However, the objective of these techniques is always the same, i.e., reducing
computational costs while maintaining accuracy of existing methods as much as possible. Our
first contribution, presented in Chapter 4, provides a broad overview of the current state of the
art. We have identified three major categories of methods to reduce the computational com-
plexity of DNNs (see Figure 1.1), i.e., (i) quantization techniques, (ii) parameter or network
pruning, and (iii) exploiting structural properties of DNNs. In the following, we give a brief
outlook on the individual categories, allowing us to fit our subsequent contributions properly
into the literature.
The first category is concerned with quantization of the weights and the activations of a DNN.

The numerical quantities involved in the computations of a DNN are typically represented as
32 bit floating-point numbers. The aim of quantization is to map these numerical quantities to
representations that require fewer bits and allow for more efficient arithmetic operations.
The second category is concerned with pruning techniques, i.e., achieving a high degree of

sparsity in certain matrix and tensor structures. For a sufficient degree of sparsity and ade-
quate data structures, the memory and computation requirements can be drastically reduced.
Recently, structured sparsity approaches have been considered that eliminate entire dimensions
of matrices and tensors such that no special data structures are required.
The third category exploits structural properties of DNNs to reduce their computational

– 3 –

1 Introduction

Resource-Efficient DNNs

Quantization Network Pruning Structural Efficiency

Low-Precision Numerical
Computations

Quantization-Aware Training

Bayesian Approaches

Unstructured Pruning

Structured Pruning

Dynamic Network Pruning

Bayesian Approaches

Weight Sharing

Knowledge Distillation

Special Matrix Structures

Manual Architecture Design

Neural Architecture Search

Figure 1.1: Literature overview on resource efficiency in DNNs. We have discovered three major topics:
(i) quantization, (ii) network pruning, and (iii) structural efficiency. The individual categories
are discussed in detail in Chapter 4. Our own contributions discussed in Chapters 5, 6, and 7
fall into the subcategories shown in blue.

complexity. This category is rather diverse and can be further split into the subcategories (i)
weight sharing, (ii) knowledge distillation, (iii) exploiting special matrix structures, (iv) manual
architecture design, and (v) neural architecture search (NAS) techniques.
We mention that our overview provides only a snapshot of the current research. Due to the

incredibly fast developments in the recent past, we expect that our overview will soon lack many
important contributions.

Training discrete-valued DNNs: This contribution belongs to the category of Bayesian
quantization techniques. The proposed method is concerned with the training of DNNs having
discrete weights and activation functions. We focus on ternary, quaternary, and quinary weights
and binary activations using the sign activation function. For ternary weights, the memory
footprint is reduced by at least a factor of 16 compared to 32 bit floating-point weights. In
conjunction with binary activations from the sign function, multiply-accumulate operations—
constituting the bulk of operations—are reduced to (integer) additions and subtractions.
The challenge of training discrete weights is that we are facing a combinatorial optimization

problem in millions of variables for which it appears hopeless to apply traditional combinatorial
optimization techniques. Common approaches to avoiding the combinatorial optimization are
based on the straight-through gradient estimator (STE), a method that enables gradient-based
training in the presence of piecewise constant quantization functions. Our method follows a
different approach. We introduce a discrete weight distribution and formulate an expected loss
with respect to this distribution. This allows us to train the discrete weight distribution by

– 4 –

1.2 Contributions

means of continuous optimization. Once the discrete weight distribution has been trained, we
infer a discrete-valued DNN from the weight distribution either by taking its most probable
value or by sampling from it. The resulting method is closely related to variational inference, a
widely used approximate Bayesian inference technique in the Bayesian deep learning community.

Our method improves on several aspects compared to previous works operating on discrete
weight distributions. In particular, our method allows for arbitrary discrete weights whereas
previous works are constrained to binary and ternary weights. This is achieved using simpler
parameterization and initialization schemes for the weight distribution. Furthermore, previous
works applied a max pooling approximation that does not fully utilize the distributional prop-
erties. Our work introduces a distribution-aware max pooling approximation based on iterated
moment matching. We evaluate our model on several image classification datasets for which we
achieve state-of-the-art performance. Our experiments provide thorough insights into various as-
pects of the proposed method. We empirically show that our parameterization and max pooling
approximation facilitate training and result in higher accuracy. Our method allows us to trade
off between computational complexity and accuracy in two natural ways. First, we can increase
the expressiveness of the model by increasing the number of discrete weight values. Second, we
can vary the number of models sampled from the weight distribution for model averaging.

Weight sharing in Bayesian DNNs: This contribution belongs to the category of weight
sharing, a subcategory of structural efficiency approaches. The proposed method is concerned
with sampling based methods for approximate Bayesian inference. For posterior distributions
over the weights of a DNN, sampling is extremely difficult and time-consuming. As a conse-
quence, generating samples on demand may not be an option. A possible solution is to generate
samples offline, introducing a substantial memory overhead to store those samples.
To reduce the memory for storing an ensemble of DNNs, we introduce a DP on top of the

weight prior in a Bayesian DNN. This induces a weight sharing that is subsequently utilized to
drastically reduce the number of parameters. However, it is well-known that sampling based
inference using DPs is inherently difficult. Along with unfavorable computational properties
inherited from DNNs, the main challenge of this approach is to develop a feasible inference
scheme in the first place. For this purpose, we adopt sampling techniques from mixture models—
the traditional application of DPs—to DNNs. Moreover, we propose algorithmic techniques and
approximations to avoid many redundant computations in order to overcome these difficulties.
The proposed method is applicable to fully connected DNNs for datasets of moderate size,

the regime where Bayesian inference is most interesting. We demonstrate the effectiveness of
our method in experiments on several image classification and regression tasks. Our method
is competitive with DNNs without weight sharing and outperforms randomly shared weights.
Especially if only few weights are shared among the connections of a DNN, the method clearly
outperforms randomly shared weights. The degree of sharing can be determined by varying the
concentration parameter of the DP. This allows us to effectively trade off between model size
and accuracy.

Transferring deep learning methods to other model classes: This contribution employs
techniques from two categories, i.e., (i) NAS from the category of structural efficiency approaches
and (ii) quantization-aware training. With this contribution we positively answer the question
whether recent advances in deep learning are transferable to other model classes. For this
purpose, we select BN classifiers with naïve Bayes and tree-augmented naïve Bayes (TAN)
structures as our model of study. We developed two particular methods. First, we perform TAN
structure learning based on differentiable NAS. Second, we perform parameter quantization
using quantization-aware training.
Structure learning, even for the relatively simple class of TAN structures, is a difficult combina-

torial optimization problem. Traditionally, this problem is solved using score-based approaches

– 5 –

1 Introduction

relying on combinatorial search heuristics such as greedy hill climbing. Here, we adopt differ-
entiable NAS techniques that are used to train the parameters and the structure of a DNN by
means of continuous optimization. The resulting method for TAN structure learning bears many
similarities to our method for training discrete-valued DNNs above. In particular, we introduce
a probability distribution over the space of TAN structures and formulate an expected loss with
respect to this distribution. Subsequently, we jointly train this distribution and the BN parame-
ters using continuous optimization techniques. Once the distribution has been trained, we infer
a TAN structure using the most probable model from this distribution. A simple extension of
the loss function allows us to also take the model size into account. The proposed method can
be easily implemented using modern automatic differentiation frameworks without the need for
combinatorial search heuristics.
Our quantization approach is based on quantization-aware training, the predominant approach

to perform quantization in DNNs. Quantization-aware training relies on the STE which allows us
to perform gradient-based learning in the presence of piecewise constant quantization functions.
The typical workflow is as follows. We maintain a set of continuous parameters but evaluate a
loss function for quantized versions of these parameters. During gradient computation when the
chain rule of calculus is invoked, the zero derivative of the quantization function is replaced by
the non-zero derivative of a similar function. In this way, we obtain a non-zero gradient for the
continuous parameters which is subsequently used for gradient-based learning. After training,
the continuous parameters are discarded and only the quantized versions are kept.
We conduct extensive experiments for both methods. Our structure learning approach con-

sistently outperforms random TAN structures and generative Chow-Liu TAN structures. Using
a model size penalty, we can trade off between model size and accuracy. With our quantization
approach, we can quantize the parameters to only few bits without notable accuracy degra-
dation. The proposed method outperforms a branch-and-bound algorithm specifically tailored
to parameter quantization. We also conduct an extensive comparison of quantized BN classi-
fiers and quantized DNNs. The results show that, depending on the requirements of a specific
applications, both model classes are viable options. Furthermore, quantization-aware training
performs well for DNNs in the small-scale setting. This implicitly closes a gap in the literature
since the majority of papers are dedicated to the large-scale setting.

1.3 Outline
This thesis is divided into nine chapters. Chapter 2 and Chapter 3 introduce the necessary
background for the remainder of the thesis. Our literature overview is provided in Chapter 4.
Chapters 5, 6, and 7 present our particular contributions to the resource efficiency literature.
Chapter 8 concludes this thesis and Chapter 9 provides a list of publications. Details about the
datasets used in our experiments and some technical calculations can be found in the appendix.
A detailed outline of the individual chapters is provided below.

Chapter 2 introduces the problem setup of supervised learning and shows how to optimize
a model for various performance metrics by means of gradient-based learning. We provide an
overview on computation graphs and automatic differentiation—two components whose role is
crucial for the widespread use of deep learning. Then we introduce DNNs along with com-
monly used building blocks required to successfully train them. The chapter concludes with a
chronological overview of some of the most influential architectures from the past decade.

Chapter 3 introduces the Bayesian inference framework along with common challenges inher-
ent to the subject. We also briefly introduce BNs, the main subject of Chapter 7. Since exact
Bayesian inference is intractable for most models, we present common approximate inference

– 6 –

1.4 Symbols and Notation

techniques such as variational inference and sampling. After a general treatment of Bayesian
inference, we show how to apply the Bayesian framework to DNNs. In particular, we show how
variational inference and sampling techniques can be applied to Bayesian DNNs.

Chapter 4 provides a comprehensive overview of the current state of the art to achieve re-
source efficiency in deep learning. The literature is split into three main categories, i.e., (i) quan-
tization techniques, (ii) parameter pruning, and (iii) exploiting structural properties of DNNs.
We review many of the most influential works from the individual categories. Throughout the
chapter we highlight existing approaches that can be related to Bayesian inference.

Chapters 5, 6, and 7 present our contributions to the resource efficiency literature. Our first
contribution presented in Chapter 5—training discrete-valued DNNs—is based on our paper

• W. Roth, G. Schindler, H. Fröning, and F. Pernkopf; Training Discrete-Valued Neural
Networks with Sign Activations Using Weight Distributions; In: European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD); pp. 382–398, 2019.

Our second contribution presented in Chapter 6—weight sharing in Bayesian ensembles of
DNNs—is based on our paper

• W. Roth and F. Pernkopf; Bayesian Neural Networks with Weight Sharing Using Dirichlet
Processes; In: IEEE Transactions on Pattern Analysis and Machine Intelligence; vol. 42 (1),
pp. 246–252, 2020.

Our third contribution presented in Chapter 7—transferring techniques for improving resource
efficiency in deep learning to BNs—is based on our papers

• W. Roth and F. Pernkopf; Differentiable TAN Structure Learning for Bayesian Net-
work Classifiers; In: International Conference on Probabilistic Graphical Models (PGM);
pp. 389–400, 2020,

• W. Roth, G. Schindler, H. Fröning, and F. Pernkopf; On Resource-Efficient Bayesian
Network Classifiers and Deep Neural Networks; In: International Conference on Pattern
Recognition; pp. 10297–10304, 2020.

These contributions are largely independent from each other and can be read in arbitrary order.
We note that each of these chapters contains its own experiments and discussion sections.

Chapter 8 concludes the thesis. We discuss the most important findings of the individual
contributions and state limitations of the proposed methods. These limitations immediately
lead to promising directions of future research that were not addressed in this thesis.

Chapter 9 provides a complete list of publications that emerged either directly as part of this
thesis or in related contexts.

1.4 Symbols and Notation
General notation guidelines: The general notation guideline used throughout this thesis is
as follows. Non-boldface symbols (e.g., a, x, L, N , ε, θ, . . .) indicate scalar values for both
uppercase and lowercase letters. Boldface lowercase symbols (e.g., a, x, . . .) indicate (column)
vectors. Boldface uppercase symbols (e.g., B, W, . . .) indicate matrices (or tensors). We

– 7 –

1 Introduction

emphasize, however, that there are several exceptions to these general notation guidelines. For
instance, we generally treat inputs and outputs of DNN layers as vectors x and, therefore, we
also denote the tensor-valued inputs and outputs of convolutional layers by lowercase symbols
x. Moreover, we sometimes abuse notation and use boldface uppercase and lowercase symbols
to denote sets of vectors and matrices (or tensors), respectively. In all of these cases, the
corresponding symbols will be properly introduced and, given the context, there should be no
confusion about their meaning.
We aim for a consistent use of symbols throughout the thesis. However, due to the extent of

this thesis, this was rather challenging and we sometimes had to overload symbols. If symbols are
overloaded and only required in a narrow context, their meaning should be clear. If important
symbols are required at several locations in the thesis, their specific use is often indicated by a
subscript (e.g., βbn, γbn, αdp, . . .).

For probability distributions, we rely on the arguments of p(·) to identify the appropriate
distribution. We use the symbol q(·) to indicate various kinds of approximating distributions.
In our notation, we typically do not make a clear distinction between random variables and
concrete instantiations thereof. However, we sometimes use the notation p(A > 0) or p(Y = 1)
to refer to the probability of an event where the uppercase symbols correspond to the random
variable of a lowercase symbol that is currently being discussed. Only in our discussion about
BNs, we make a clearer distinction between uppercase random variables X, X, Y and lowercase
instantiations x, x, y. In particular, by p(X) we refer to distributional properties while p(x) is
the probability density function (pdf) (or probability mass function (pmf)) evaluated at x.

Computation graphs: This thesis contains several graphical illustrations of computation
graphs. Circles correspond to value nodes. Boxes correspond to operation nodes. Diamonds
correspond to sampling nodes. Blue value nodes correspond to parameters whose gradient is
relevant for gradient-based learning. Yellow value nodes correspond to the output of the compu-
tation graph. Green operation nodes correspond to differentiable functions that are compatible
with backpropagation. Red operation nodes correspond to operations that are not compatible
with backpropagation, i.e., they are not differentiable or their gradient is zero almost every-
where. Sampling nodes are always shown in red. The forward path is indicated by solid red
lines. The backward path is indicated by dashed green lines.

Bayesian networks: This thesis contains several graphical illustrations of BNs. Variables are
shown as circles. Shaded circles correspond to known (observed) quantities whereas white circles
are unknown variables. The replication of variables is indicated using plate notation, i.e., boxes
around circles along with a number that indicates how often the variables are replicated. Dashed
circles indicate that the corresponding variable is optional and not present in every setting.

Mathematical symbols: The following list provides descriptions of mathematical symbols
used in this thesis.

R Real numbers
Z Integers
(a, b) Open interval from a to b
[a, b] Closed interval from a to b
⊗ A (unspecified) linear operation
∗ Convolution
� Element-wise multiplication
A� B A is much smaller than B (qualitative)
A ∝ B A is proportional to B

– 8 –

1.4 Symbols and Notation

pθ / fθ Parametric distribution / function with parameters θ
u ∼ p(u) u is sampled from (or distributed according to) p(u)
E[f(u)] Expectation of f(u) (distribution clear from context)
Eu∼p(u)[f(u)] Expectation of f(u) with respect to p(u)
V[f(u)] Variance of f(u) (distribution clear from context)
cov(u1, u2) Covariance of u1 and u2 (distribution clear from context)
DKL(p ||q) Kullback-Leibler divergence between p and q
H[p] (Differential) entropy of p
I(X1;X2) Mutual information of X1 and X2
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

U(Z) Uniform distribution over the set Z
Bernoulli(p) Bernoulli distribution with success probability p
Discrete(p) Discrete distribution with probabilities p
Gumbel(0, 1) Standard Gumbel distribution
Beta(α, β) Beta distribution with parameters α and β
Dirichlet(α1, . . . , αK) K-dimensional Dirichlet distribution with parameters α1, . . . , αK
DP(G0, αdp) DP with base distribution G0 and concentration parameter αdp
δz(·) Point mass distribution at z
φ(·) / Φ(·) pdf / cdf of the standard normal distribution
|u| Absolute value of u
|u| / |U| Number of elements of u / U
‖u‖ `2-norm of u
u> / U> Transpose of u / U
I Identity matrix (dimension clear from context)
ei ith unit vector
det(·) Determinant of a square matrix
tr(·) Trace of a square matrix (i.e., sum of its diagonal entries)
diag(u) Square diagonal matrix with entries u on its diagonal
f ′(u) Derivative of f(u)
∇uf(u) Gradient of f(u) with respect to u
Jf (u) Jacobian of f(u) with respect to u
∇2

uf(u) Hessian of f(u) with respect to u
log(u) The natural logarithm
logb(u) The logarithm to base b
sign(u) The sign function
tanh(u) The hyperbolic tangent
sigm(u) The logistic sigmoid function
softmax(u) The softmax function
softmaxi(u) ith output of the softmax function
clip(v, l, u) Clipping function min(max(v, l), u)
round(u) Rounds u to the closest integer
quant(u) A quantization function
I[condition] The indicator function (outputs 1 if condition is true, 0 otherwise)
pa(v) Parents of v in a graph (graph clear from context)
ch(v) Children of v in a graph (graph clear from context)
f(n) = O(g(n)) |f(n)/g(n)| is bounded as n→∞

– 9 –

Probabilistic Methods for Resource Efficiency in Machine Learning

2
Machine Learning and Deep Neural Networks

This chapter introduces the general framework of supervised learning—the problem setup we are
facing throughout this thesis. We focus on the concept of loss function minimization and demon-
strate how computation graphs and automatic differentiation make gradient-based minimization
particularly convenient. Subsequently, we delve into the specific model class of DNNs—the main
subject of this thesis. We formally introduce DNNs along with common building blocks, such
as batch normalization and dropout, that have enabled the training of very deep architectures.
We argue how these tools—together with automatic differentiation, the use of highly parallel
hardware, and the availability of very large (labeled) datasets—have opened the door to the
widespread use of deep learning techniques in many different areas.
Especially since the ImageNet challenge in 2012 [5] when the AlexNet architecture [6] sur-

passed the accuracy of classical computer vision approaches by an unexpectedly large margin,
many novel DNN architectures have emerged. We conclude this chapter with a brief chronologi-
cal overview of a selection of the most influential DNN architectures from the past decade along
with their fundamental design principles.

2.1 Supervised Learning
Let D = {(xn,yn)}Nn=1 be a set of N input-target pairs where xn ∈ X and yn ∈ Y. The task of
supervised learning is to infer a functional relationship f̂ : X → Y from D. Subsequently, the
function f̂ can be used to predict unknown target values y for new inputs x that are not part
of D.1 Consider the following examples that fall into this framework.

• Object classification in images: x is a vector of pixel intensities and y ∈ {1, . . . , C} indicates
the object shown in that image.

• Automatic speech recognition: x represents a speech recording and, depending on the
granularity of the task, y indicates a phoneme, a word, or even an entire sentence.

• Medicine: x is a vector of medical measurements and y ∈ {0, 1} indicates whether a person
suffers from a certain disease or not.

• Spam detection: x is a message and y ∈ {0, 1} determines whether it is spam or non-spam.

• Document classification: x is a document and y ∈ {1, . . . , C} is a topic that best describes
its content.

• Age prediction: x is a vector of observable features of a certain animal or plant and y ∈ R+
corresponds to its age (e.g., Appendix A.7.1).

• Stock market prediction: x ∈ RD+ are the stock prices of the past D days and y ∈ R+ is
the stock price of tomorrow.

1 We omit the subscript indicating the sample index when we make general statements about inputs and outputs.

– 11 –

2 Machine Learning and Deep Neural Networks

The input spaces X and output spaces Y of these examples are rather diverse. Depending on
the type of output space Y, we distinguish between two fundamental tasks. For discrete Y,
we are facing a classification task. The medical and the spam example are special instances of
binary classification where only two outcomes are possible. If there are more than two possible
outcomes, this is referred to as multiclass classification. For continuous Y, we are facing a
regression task.

The examples above also exhibit a large diversity in the type of input spaces X . For instance,
audio recordings and documents are sequential data of variable length whereas the measure-
ments of the medical example may be represented by a vector of fixed length. The practical
consequences of this diversity are that we either must resort to special purpose methods tailored
to a particular type of data or that we first map the given data to some more convenient space
and then employ a well-established method. Throughout this thesis, we assume that the inputs
are fixed-size D-dimensional vectors x ∈ RD and that any necessary data pre-processing steps
have already been conducted.
In reality, the observed dataset D rarely corresponds to some actual input-output pairs of some

function, but rather to some noisy observations thereof. The data acquisition process is typically
subject to measurement errors for both the inputs and the outputs. For instance, even if we
observe the same input values xn = xn′ , the corresponding observed outputs yn 6= yn′ might
differ. Another source of stochasticity arises due to incompleteness of the data. This occurs
when some potentially important factors of the underlying process are simply not measured.
To account for all sorts of stochasticity in the acquisition process, we assume that the given

data D is generated according to an underlying data distribution pdata(x,y). Given access to
pdata, we can quantify the uncertainty about the target y for an observed input x in terms of a
conditional distribution

pdata(y |x) = pdata(x,y)∫
Y pdata(x,y)dy . (2.1)

For classification, the integral is replaced by a sum. We can then conveniently define a predictor
f̂ using (2.1). For classification, it is common to compute the most probable class, i.e.,

f̂(x) = argmax
y∈Y

pdata(y |x) = argmax
y∈Y

pdata(x, y). (2.2)

The resulting classifier (2.2) is also referred to as the Bayes classifier. For regression, it is
common to compute the conditional mean, i.e.,

f̂(x) = Epdata(y|x)[y]. (2.3)

Both of these predictors, (2.2) and (2.3), are in a sense optimal. Predictor (2.2) minimizes the
expected 0-1 loss with respect to pdata for classification. Predictor (2.3) minimizes the expected
squared loss with respect to pdata for regression.

Given access to pdata, supervised learning is essentially solved. However, pdata is typically
unknown and we only have access to a set of samples D generated from pdata. In the following,
we show how to infer a predictor merely from the dataset D.

2.1.1 Training and Loss Function Minimization

The preceding discussion shows that supervised learning can be reduced to estimating the un-
derlying data distribution pdata. A common approach is to approximate pdata by a member pθ
from a parametric family of distributions {pθ}θ∈Θ. Subsequently, pθ is used as a proxy for pdata
in (2.2) and (2.3) to obtain a predictor f̂θ. This section discusses the central task of supervised
learning: the training (or learning) procedure. We discuss the typical training procedure through

– 12 –

2.1 Supervised Learning

the minimization of a loss function. Furthermore, we highlight the subtleties that distinguish
supervised learning from mere function optimization.

Let `(ŷ,y) be the per-sample loss incurred by predicting ŷ for a given target y. Our ultimate
goal is to find parameters θ that minimize the expected per-sample loss with respect to pdata,
i.e.,

Lexp(θ) = E(x,y)∼pdata [`(f̂θ(x),y)]. (2.4)

Since (2.4) is defined in terms of the unknown data distribution pdata, we cannot directly mini-
mize it. Therefore, we approximate the expectation (2.4) through the samples in D. This yields
the empirical loss2

Lemp(θ;D) = 1
N

N∑
n=1

`(f̂θ(xn),yn). (2.5)

For regression, the per-sample loss is selected to be the squared error function `(ŷ,y) =
‖ŷ− y‖2. The corresponding empirical loss (2.5) yields the mean squared error (MSE) loss

LMSE(θ;D) = 1
N

N∑
n=1
‖f̂θ(xn)− yn‖2. (2.6)

For classification, the per-sample loss is selected as the 0-1 loss `(ŷ,y) = I[ŷ 6= y]. Here, I is
the indicator function that yields 1 if its argument is true and 0 otherwise. The corresponding
empirical loss (2.5) is the classification error on the given dataset D.
Many modern machine learning algorithms rely on gradient-based optimization. This requires

that the loss function L is differentiable and its gradient ∇θL is non-zero. However, the 0-1 loss
for classification is piecewise constant and its gradient is zero almost everywhere. Therefore,
we typically minimize a differentiable surrogate that correlates with the 0-1 loss. For binary
classification with Y = {0, 1}, we minimize the binary cross-entropy loss defined as

LBCE(θ;D) = −
(

1
N

N∑
n=1

yn log pθ(Y = 1 |xn) + (1− yn) log (1− pθ(Y = 1 |xn))
)
. (2.7)

For multiclass classification with targets Y = {1, . . . , C}, the corresponding multiclass cross-
entropy loss is defined as

LCE(θ;D) = − 1
N

N∑
n=1

log pθ(Y = yn |xn). (2.8)

The minimization of (2.7) and (2.8) requires a model that produces conditional probabilities
pθ(Y = y |x). Fortunately, this holds for many models encountered in practice and, in particular,
for DNNs (see Section 2.2).
Note that the cross-entropy loss is a suitable proxy for the 0-1 loss since it penalizes samples

for which the output probabilities of the true class pθ(yn |xn) are not close to one. In fact,
the cross-entropy loss is a natural choice for a loss function. Both the MSE and the cross-
entropy loss can be interpreted as likelihood maximization (see Section 3.2.1). The likelihood
is an important metric since it also takes the output probabilities p(y |x) into account. The
likelihood incurs a large loss for highly confident wrong predictions, but it does not severely
penalize wrong predictions where the true target is still assigned a high probability. This is in
contrast to the 0-1 loss that simply makes a binary decision.
According to our ongoing discussion, supervised learning reduces to an optimization problem.

2 The empirical and expected loss are also known as empirical and expected risk in some contexts (e.g., see [7]).

– 13 –

2 Machine Learning and Deep Neural Networks

However, there are some subtle differences that distinguish the training procedure from a pure
optimization task. We have shown that we must resort to the minimization of an empirical loss
Lemp defined in terms of a dataset D. Furthermore, in the case of classification, the cross-entropy
loss is a surrogate loss deviating from our true objective, the 0-1 loss. Therefore, a minimizer
of the resulting empirical loss Lemp is generally not optimal for the expected loss Lexp that we
ultimately wish to minimize. This must be taken into account to obtain a model that performs
well on previously unseen data—a property known as generalization. Indeed, many models, such
as DNNs [8], are universal function approximators capable of representing arbitrarily complex
functional relationships. Such models are particularly prone to overfitting, meaning that they
achieve a high accuracy on the given dataset but still perform poorly on unseen data.
Because of this, a typical supervised learning algorithm splits the given dataset D into three

disjoint subsets: (i) a training set Dtr, (ii) a validation set Dva, and (iii) a test set Dte. The
training set Dtr is used to define the empirical loss Lemp which is typically minimized using
gradient-based optimization. The true objective that we wish to minimize (e.g., the 0-1 loss
for classification) is evaluated on the separate held-out validation set Dva. The purpose of
the validation set is twofold. First, since Dva is not used to specify the empirical loss Lemp,
the validation performance provides a better estimate of the generalization performance on
previously unseen data. Second, the validation set is used formodel selection and hyperparameter
optimization. Hyperparameters are high-level parameters that govern the structure of a model,
the loss function, or the optimization algorithm itself. These hyperparameters may have a large
impact on the generalization performance but need to be selected before the optimization of
Lemp. Using a validation set, it is also common to apply early stopping to tune the number of
iterations of an iterative optimization procedure. Early stopping selects an intermediate model
that achieves the best validation performance during training and optionally terminates training
early if no further progress can be expected. However, by tuning hyperparameters on a validation
set, we obtain a model whose validation performance is an optimistically biased estimate of the
generalization performance. To obtain an unbiased estimate of the generalization performance,
we require another distinct test set Dte on which the selected model is finally evaluated.
The problem of overfitting is a major topic of supervised learning. Overfitting typically occurs

when the selected model family {pθ}θ∈Θ exhibits great expressiveness and training data is
scarce. In this case, the training algorithm selects an overly complex model pθ that memorizes
the individual data points, including all the noise that is present in the training data. As a
result, such a model will fail to capture the underlying patterns in the data which is necessary
to generalize well.
Overfitting is typically avoided by limiting the expressiveness of pθ. A straightforward so-

lution is to select a family of simple (low complexity) models {pθ}θ∈Θ. The number of free
model parameters (i.e., the number of dimensions of θ) is a commonly used criterion for model
complexity, suggesting to employ a model with few parameters. If such a model performs well
on the training data, it is also expected to perform well on unseen data. Such simple models,
however, may suffer from the reverse problem of underfitting in which case the model class is
not rich enough to capture the given data.
Therefore, it is often more convenient to select a family of models {pθ}θ∈Θ that is rich enough

to model the data distribution pdata. Then we seek for the simplest model pθ in that family
that still captures the training data well. Since the number of model parameters is now fixed,
a different notion of model complexity is required. Intuitively, the output of a simple function
does not vary much if we slightly vary its input. For many models, larger parameters θ directly
correspond to stronger variations in the induced function f̂θ. We can utilize this observation by
incorporating a regularization term R(θ) to the loss function which penalizes large parameters.
This yields a regularized loss given by the sum of a data term and a regularizer, i.e.,

L(θ;D) = Ldata(θ;D) + λR(θ), (2.9)

– 14 –

2.1 Supervised Learning

Algorithm 1 Gradient descent
1: Input: Loss L(θ), initial parameters θ0, learning rates (ηt)t≥1
2: t← 1
3: while stopping criterion not met do
4: θt ← θt−1 − ηt∇θL(θt−1)
5: t← t+ 1
6: end while

where λ > 0 is a trade-off hyperparameter and Ldata is an arbitrary loss. A common choice
for the regularization term R(θ) is the `2-norm over the parameters.3 An optimal model with
respect to (2.9) must fit the data well and be sufficiently simple. In practice, the challenge
remains to select an optimal trade-off parameter λ to obtain a good balance between data fit
and model complexity. As we will see in Section 3.2.1, minimizing the regularized loss (2.9)
using an `2-norm regularizer is equivalent to maximizing a posterior density.

We will encounter several other regularization techniques in this thesis. For instance, many
techniques achieve regularization by making training more difficult by injecting different kinds
of noises (e.g., dropout [9]). In the following sections, we focus on the optimization aspect and
ignore the specifics of the training procedure.

2.1.2 Gradient-Based Optimization
The minimization of a loss function is the central task of most machine learning algorithms.
Especially in the context of deep learning, loss function minimization is extremely challenging.
The encountered models are often specified by millions of parameters and we have to deal with
non-convex, highly nonlinear loss functions that exhibit many flat regions and poor local minima.
In principle, we could treat a loss L(θ) as a black box function without access to its derivatives.

However, black box optimization tends to perform poorly for high-dimensional parameter spaces
Θ. Especially for deep learning, most optimization techniques are first-order methods where we
have access to the gradient of the loss function L. The negative gradient of a function points into
the direction of steepest descent, i.e., the direction in which the function locally decreases the
most. By slightly moving the current parameters θ into the direction of the negative gradient
of L, we decrease the loss and obtain a better model. The gradient descent algorithm (see
Algorithm 1) implements this idea in an iterative manner to progressively reduce the loss.
Gradient descent is governed by a learning rate (or step size) hyperparameter ηt > 0 that

determines how much the parameters θ are changed in each iteration. Under mild conditions
on the loss L(θ) and using suitable learning rates ηt, gradient descent converges to a stationary
point where the gradient vanishes [10]. In practice, the algorithm is iterated until some stopping
criterion is met. Typical stopping criteria are based on a maximal number of iterations, a fixed
time budget, diminishing changes of the loss L or the parameters θ, or a sufficiently small
gradient norm ‖∇θL(θ)‖.
It turns out that the learning rate ηt is one of the most important hyperparameters whose

choice is crucial for the success of many learning algorithms. The challenge is to select a suitable
step size ηt that is large enough to sufficiently reduce the loss function while not running the
risk of increasing the loss again.

Stochastic Gradient Descent

Gradient descent provides a powerful framework to minimize any differentiable loss L(θ). How-
ever, the standard version as defined in Algorithm 1 is impractical for losses specified by very

3 In the context of DNNs, an `2-norm regularizer is also called weight decay term.

– 15 –

2 Machine Learning and Deep Neural Networks

Algorithm 2 Stochastic gradient descent (mini-batch version)
1: Input: Loss L(θ;D), initial parameters θ0, learning rates (ηt)t≥1, mini-batch size NB
2: t← 1
3: while stopping criterion not met do
4: D ← shuffle D
5: (D1, . . . ,DK)← partition D into K mini-batches of size NB
6: for k = 1 to K do
7: θt ← θt−1 − ηt∇θL(θt−1;Dk)
8: t← t+ 1
9: end for

10: end while

large datasets. As we have already seen, many common loss functions are defined by a sum over
individual per-sample losses `n(θ) as

L(θ;D) = 1
N

N∑
n=1

`n(θ) where `n(θ) = `(f̂θ(xn),yn). (2.10)

The cost of evaluating (2.10) and its gradient scales linearly with the total number of samples N ,
rendering gradient descent impractical for large N as the gradient is required in every iteration.

The common solution is provided by the framework of stochastic gradient descent (SGD)
where the parameters are updated based on cheaper stochastic Monte Carlo gradients. Instead
of computing the gradient for the whole dataset D, SGD estimates the gradient based on a single
per-sample loss `n(θ) for a randomly selected sample n. This allows us to estimate the gradient
at a cost that is independent of the dataset size N . Consequently, we can perform several
gradient updates for the same computational budget as required by a single update based on
the exact gradient.4 Furthermore, for an online setting with an indefinite number of samples,
SGD might be the only option as computing exact gradients is not possible.
However, these approximate gradients exhibit a certain amount of variance that might oc-

casionally drive the parameters into bad directions. Therefore, it is natural to ask whether
performing multiple stochastic gradient updates provides any benefits compared to batch gra-
dient descent. Similar to gradient descent, SGD converges under mild conditions on the loss
L and a suitable learning rate schedule to a stationary point where the gradient vanishes [10].
However, when analyzing the asymptotic behavior of SGD on convex functions, batch gradient
descent achieves an optimal convergence rate [10]. Nevertheless, Bottou et al. [10] also show
that SGD outperforms batch gradient descent when considering a practical scenario using a
fixed time budget. Hence, from a practical viewpoint, the fast progress made by SGD in the
beginning of training outweighs the asymptotic properties of batch gradient descent.
In practice, stochastic gradients are rarely obtained by considering only a single sample,

but rather using randomly selected subsets of D containing NB samples, called mini-batches.
Computing the gradients using mini-batches reduces the gradient variance while allowing to fully
utilize efficient parallel batch operations of modern hardware. As a result, the computational
cost for small mini-batches and per-sample gradients is typically of the same order. Selecting a
proper mini-batch size NB requires a careful trade-off between computational costs and gradient
variance. In practice, the size of mini-batches NB is rarely larger than a few hundred samples.
Note that practical considerations regarding hardware efficiency are not considered in theoretical
analyses such as [10] which assume that evaluating the exact gradient of L is N times more
expensive than evaluating the per-sample gradients of `n.
A typical implementation of SGD (see Algorithm 2) repeatedly shuffles the order of the samples

4 Gradient descent is also called batch gradient descent in this context.

– 16 –

2.1 Supervised Learning

Algorithm 3 Stochastic gradient descent (general version)
1: Input: Loss L(θ) = Eε∼p(ε)[L(θ, ε)], initial parameters θ0, learning rates (ηt)t≥1
2: t← 1
3: while stopping criterion not met do
4: ε ∼ p(ε)
5: θt ← θt−1 − ηt∇θL(θt−1, ε)
6: t← t+ 1
7: end while

in D and then partitions them into mini-batches. Iterating over these mini-batches then ensures
that all samples are processed equally often. The common terminology is to call each gradient
update an iteration whereas a full pass over the whole dataset is called an epoch. An interesting
aspect is that during the first epoch, where each sample is processed for the first time, we
actually minimize the expected loss Lexp with respect to the underling data distribution pdata.
Only after the samples are processed multiple times we can distinguish between empirical and
expected loss minimization.
There exists a number of extensions of SGD that aim to improve its practical convergence

properties. For instance, by introducing momentum to the updates we also take previous gra-
dients into account. The corresponding parameter update in line 7 of Algorithm 2 is replaced
by

vt = ξmomvt−1 − ηt∇θL(θt−1;Dk),
θt = θt−1 + vt (2.11)

where ξmom > 0 is a momentum hyperparameter and vt is interpreted as a velocity term.
Momentum reduces the influence of gradient variance and stabilizes training. Our experiments in
Chapter 5 and Chapter 7 were performed using the stochastic optimization algorithm Adam [11]
which maintains running averages of the gradient and the squared gradient entries to compute
more sophisticated updates.
We emphasize that SGD is not limited to empirical loss functions defined in terms of per-

sample losses `n. SGD is applicable whenever a loss can be defined as an expectation over a
random variable ε, i.e.,

L(θ) = Eε∼p(ε) [L(θ, ε)] such that ∇θL(θ) = Eε∼p(ε) [∇θL(θ, ε)] . (2.12)

This allows us to compute unbiased Monte Carlo estimates of the gradient by sampling ε ∼ p(ε)
and evaluating ∇θL(θ, ε). This is shown in Algorithm 3. Note that the empirical loss (2.10)
is a specific instance of (2.12) by considering p(ε) as a discrete uniform distribution over the
samples of D.

While SGD is applied to empirical losses (2.10) mainly for efficiency purposes, for some appli-
cations it allows us to perform gradient-based optimization in the first place. Indeed, the SGD
framework allows us to effectively optimize expressions that cannot even be evaluated in closed
form. For instance, variational inference, discussed in Section 3.2.3, minimizes the Kullback-
Leibler (KL) divergence between two distributions which is given by an expectation. Another
example is the induced loss of dropout training which is discussed in Section 2.2.4.

2.1.3 Automatic Differentiation

A computation graph is a graphical representation of a function that allows for the automatic
computation of partial derivatives. This is particularly convenient as we only have to specify
how a function is computed and we obtain its partial derivatives by an automated process.

– 17 –

2 Machine Learning and Deep Neural Networks

This process does not only relieve us from the burden of calculating and implementing the
partial derivatives by hand, but computing the gradient does also not take substantially longer
than evaluating the function itself. Computation graphs and automatic differentiation are an
integral part of modern deep learning frameworks to define loss functions that are subsequently
minimized using gradient-based optimization. A comprehensive overview on different techniques
and applications that benefit from automatic differentiation is provided in [12].

Computing Derivatives

Before we define computation graphs and automatic differentiation, we give a brief overview
of the more conventional methods to compute gradients of an arbitrary differentiable function
L(u).5 The first approach is simply to derive analytic expressions for the gradient—typically
using pen and paper—and to implement these expressions using the programming language at
hand. Since this is a tedious and error-prone task, the implementation has to be tested carefully
for correctness. This is done by comparing the numerical values to a different way of computing
the partial derivatives—usually the finite difference approximation that we will describe shortly.
If this numerical test fails, there is often a variety of possible causes and one typically does not
get a good indication to where the failure stems from. Moreover, when the function L is changed
slightly, all of the above steps have to be performed again which impedes the ability for fast
prototyping of new models and functions L.

The second approach, namely the finite difference approximation, essentially approximates
the definition of a partial derivative

∂L
∂ui

(u0) = lim
∆→0

L(u0 + ∆ei)− L(u0)
∆ (2.13)

for some small ∆ > 0, where ei denotes the ith unit vector. However, computing the finite
difference approximation is not straightforward since the choice of a suitable ∆ is crucial to
obtain good approximations. On the one hand, if ∆ is too large, the approximation quality
might be poor as (2.13) requires ∆ to be small. On the other hand, if ∆ is too small, we might
run into numerical issues. Furthermore, evaluating the gradient at u0 ∈ RD requires D + 1
function evaluations which is prohibitive in many cases.
The third approach is called symbolic differentiation, where a given expression of L is dif-

ferentiated using the laws of differential calculus to obtain a symbolic expression of the partial
derivatives ∂L/∂ui. This approach is appealing if we are interested in the symbolic expressions
themselves. However, the resulting expressions of ∂L/∂ui are often substantially larger than the
function L itself. Therefore, this approach is not recommended if we are only interested in a
numerical evaluation of the gradient.
Given that most of these difficulties become obsolete when using automatic differentiation,

the ease of developing new models becomes evident. Automatic differentiation is certainly one of
the most important factors that have led to the rapid rise and widespread use of deep learning.
Although automatic differentiation is by no means a new invention—it essentially performs a
systematic computation of the chain rule of differential calculus—, it has only been in the past
decade that corresponding tools have attracted much attention in machine learning.

Computation Graphs and Backpropagation

Automatic differentiation operates on a computation graph that specifies how to compute a
scalar-valued function L. We define a computation graph as a bipartite directed acyclic graph
G where edges appear only between value nodes ui and operation nodes fi. The value nodes ui
correspond to actual numerical quantities that appear during the computation of the function.
5 We use the symbol L since loss function minimization is the main application in this thesis.

– 18 –

2.1 Supervised Learning

These are the inputs of L, intermediate values that appear during the computation of L, and
the scalar-valued output of L. An operation node specifies how to compute its children from
its parents. We refrain from using the term function node since we also allow for non-function
operations such as stochastic sampling nodes. Note that other definitions of computation graphs
are possible, e.g., in [12, 13] there is no clear distinction between operation and value nodes.
Note that the subscripts i of value and operation nodes are used to identify nodes irrespective

of their type. We utilize the fact that every directed acyclic graph admits a topological ordering
where every parent node appears before their children. In the following, we assume that the
nodes are ordered in topological order, i.e., for every parent j of a node i it holds that j < i.
The strength of computation graphs is that they allow us to compute the partial derivatives

of L with respect to all value nodes ui efficiently in an automated manner. The algorithm we
are going to present is known as automatic differentiation in the backward mode or, in short,
simply backpropagation. The algorithm proceeds in two stages.
The first stage of the algorithm is called the forward pass (or forward propagation) which sim-

ply evaluates the function. This is accomplished by traversing the operation nodes in ascending
order and computing the corresponding output nodes. Due to the topological ordering, we are
guaranteed that the input value nodes have already been computed.
In the second stage, the backward pass (or backward propagation), the algorithm traverses

the graph in reverse direction. In this stage, the algorithm systematically applies the chain rule
of differential calculus to compute the partial derivatives of L with respect to all value nodes ui.
To be self-contained, we briefly review the chain rule of differential calculus here. Consider

two functions f : RK → RK′ and L : RK′ → R. Using the chain rule, the partial derivatives of
L(f(u)) are given by6

∂L
∂ui

=
K′∑
j=1

∂L
∂fj

∂fj
∂ui

. (2.14)

By denoting v = f(u), the gradient of L(f(u)) can be compactly written as

∇uL = J>f ∇vL, (2.15)

where Jf ∈ RK′×K denotes the Jacobian matrix of f , i.e.,

Jf =


∂f1
∂u1

· · · ∂f1
∂uK

...
∂fK′
∂u1

· · · ∂fK′
∂uK

 . (2.16)

Note that (2.15) integrates nicely into the computation graph framework by viewing f as a
particular operation node and L being the remainder of the computation graph as a function of
f ’s output v. Therefore, to compute the gradient of L with respect to f ’s input u, we require
that the gradient with respect to f ’s output v has already been computed. Note that this is
reminiscent of the forward pass where we require that the inputs of f must have been computed
in order to compute the outputs of f .

To obtain a practical algorithm for computation graphs, we need to consider that each value
node ui might be an input to several operation nodes fk. Furthermore, each of these operation
nodes fk may itself have multiple output nodes vj . However, this does not pose any major
problems and we can utilize the additive nature of the gradient computation in (2.14). This
is accomplished by initializing gradients ∇uiL with zero and accumulating several Jacobian-
gradient products, one per value node vj that directly depends on ui through some operation

6 Note that the subscripts in (2.14) correspond to individual dimensions and not to graph node indices.

– 19 –

2 Machine Learning and Deep Neural Networks

Algorithm 4 Automatic differentiation
1: Input: Computation graph G, assignments of input value nodes val(ui)
2: (fi1 , . . . , fiK)← topological ordering of K operation nodes
3: pa← parent function (returns parents of a node)
4: ch← child function (returns children of a node)
5: # Forward propagation: Compute value nodes val(·)
6: for k = 1 to K do
7: u← pa(fik)
8: for v ∈ ch(fik) do
9: val(v)← fik,v(val(u))

10: end for
11: end for
12: # Backward propagation: Compute gradients δ(·)
13: δ(ui)← 0 ∀i : ui value node
14: δ(L)← 1
15: for k = K to 1 do
16: for v ∈ ch(fik) do
17: for u ∈ pa(fik) do
18: δ(u)← δ(u) + J>fik,u,v(val(pa(fik)))δ(v)
19: end for
20: end for
21: end for
22: return δ

node fk. Once every operation node fk depending on ui has been processed, the accumulated
gradient contributions contain the correct gradient ∇uiL.

Starting from the output node and setting ∂L/∂L = 1, the backward pass traverses the
operation nodes in descending order. At each operation node fk, the gradient contributions from
the Jacobian-gradient products are added to all of its inputs ui. Due to the topological ordering,
we are guaranteed that the gradients ∇vjL for all children of fk contain valid information. Once
all operation nodes have been visited, the algorithm has correctly computed the gradient of L
with respect to all value nodes ui. The full algorithm, forward and backward pass, is shown in
Algorithm 4. The pseudocode introduces some new notations, i.e., ch(f) returns the children of
node f , pa(f) returns the parents of node f , fv computes the value of f ’s child v (f may have
other children as well), and Jf,u,v is the Jacobian of f restricted to its parent u and child v.
There are some aspects that need to be considered for a practical algorithm. Note that for the

forward pass, intermediate values can be discarded as soon as every operation nodes depending
on them have been processed. However, when we intend to perform the backward pass, all
of these values must be kept in memory as they are required to compute the Jacobians Jf .
This additional bookkeeping might pose a severe limitation due to a memory bottleneck. This
problem can be mitigated by not keeping all value nodes in memory and recomputing value
nodes on demand, effectively resulting in a trade-off between memory consumption and running
time.
Furthermore, while we have so far only assumed vector-valued nodes, in practice we often

encounter value nodes that contain matrix-valued or, more generally, tensor-valued nodes. In
this case it is best thought of as temporarily reshaping any tensor-valued node ui into a vector
and restoring its original shape once processing has finished.
Another important point is that the algorithm only requires the product of the Jacobian Jf

with another vector and does not require that the Jacobian Jf is ever explicitly computed. In
fact, the Jacobian Jf typically exhibits a lot of structure and it would be wasteful to compute
it explicitly. For instance, for an operation node f(Ui,Uj) = UiUj = V computing a matrix

– 20 –

2.1 Supervised Learning

x

1

−0.2128

×

w 0.5−0.4256

0.5

−0.4256

+

w0 −0.2−0.4256

a

0.3

−0.4256

sigm ŷ

0.5744

−1.7408
cross-

entropy

y 1−0.3

L

0.5544

1

(a) computation graph of a simple binary logistic regression example

a

0.3

−0.4256

×

−1 −10.1277

−0.3

0.4256

exp

0.7408

0.5744

+

1 10.5744

1.7408

0.5744

inv ŷ

0.5744

−1.7408

(b) computation graph of the logistic sigmoid function sigm(a) = (1 + exp(−a))−1

Figure 2.1: Backpropagation example. Value nodes are depicted as circles whereas operation nodes are de-
picted as boxes. The values computed in the forward path (red arrows) are shown in red next to
the value nodes. The partial derivatives computed in the backward path (green dashed arrows)
are shown in green next to the value nodes. (a) The loss of a simple binary logistic regression
example (yellow node) is computed. The blue nodes indicate the parameters that are updated
using the partial derivatives. (b) Unrolled version of the logistic sigmoid from (a).

multiplication, each entry of the output matrix V only depends on a single row of Ui and a
single column of Uj . As a result, the Jacobian Jf is highly sparse. Using G = ∇VL, the
Jacobian-gradient product with respect to Ui is given by GU>j and, similarly, with respect
to Uj it is given by U>i G. Another example are operation nodes computing an element-wise
function f(ui) = vj for which the Jacobian Jf is diagonal. In this case, it suffices to compute
the element-wise product of the element-wise derivatives f ′(ui) with the gradient ∇vjL.
Figure 2.1 illustrates automatic differentiation applied to a simple binary logistic regression

example. The function defined by the computation graph in Figure 2.1(a) first computes ŷ =
sigm(wx + w0), where sigm(a) = (1 + exp(−a))−1 is the logistic sigmoid. Then, the binary
cross-entropy L(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ) for a given target y ∈ {0, 1} is computed.
During forward propagation (red path), the values of intermediate nodes (red numbers) are

computed until the loss function node L is reached. For backward propagation (green dashed
path), the partial derivative ∂L/∂L is initialized to 1. At each operation node, the partial
derivatives of its parents are computed. For instance, the partial derivative ∂L/∂a is computed
as sigm′(a) · ∂L/∂ŷ where sigm′(a) = sigm(a) · (1− sigm(a)).
The computation of sigm(a) can also be unrolled using the definition of the logistic sigmoid

as shown in Figure 2.1(b). However, since for backpropagation all intermediate values need to
be kept in memory, it is more efficient to use concise graph structures if possible. Moreover, we
are mostly not interested in the partial derivatives of intermediate nodes. In fact, the graph in
Figure 2.1(a) could be condensed by fusing the cross-entropy loss of the logistic sigmoid into a
single operation L(a, y), which results in the convenient partial derivatives ∂L/∂a = sigm(a)−y.
This example shows that the efficiency of the algorithm depends on the graph G itself. For

instance, it would be highly inefficient to define the logistic sigmoid as in Figure 2.1(b). First, we
would need to keep track of many unnecessary intermediate results and, second, we would not
exploit the fact that the derivative of sigm(a) has a simple form. Although there exist algorithms
that try to detect patterns in the graph in order to perform some sort of simplifications, it is
advisable to incorporate as much prior knowledge as possible into the definition of the graph
and its building blocks for backpropagation to be efficient.

– 21 –

2 Machine Learning and Deep Neural Networks

Many modern automatic differentiation tools do not require the user to specify the compu-
tation graph explicitly. These tools build the graph implicitly by tracking computations which
further improves their ease of use. In accordance with the DNN literature, in the remainder
of this thesis we will call the automatic differentiation algorithm in backward mode simply the
backpropagation algorithm. In the next section, we will discuss how the backpropagation algo-
rithm can be used in the presence of operation nodes whose gradient is zero almost everywhere or
not even defined. We will also come back to automatic differentiation in the context of the repa-
rameterization trick in Section 3.4.4—a technique that rewrites stochastic sampling operations
in a way that allows us to compute their gradient.

2.1.4 The Straight-Through Gradient Estimator

In our discussion on automatic differentiation we have silently assumed that the gradient of
operation nodes exists and that it is non-zero. If an operation node f(u) does not have a
valid non-zero gradient, its parents u will not receive a gradient contribution from f during
backpropagation. As a result, u cannot be updated via gradient-based learning unless it receives
a gradient contribution from a different path in the computation graph. Even worse, if an
operation is not differentiable, Algorithm 4 is not even well-defined.
The question arises whether backpropagation can still be used in the presence of such oper-

ations since this would open the door for many interesting applications (see below). The STE
[14] provides a simple, yet effective solution to obtain approximate non-zero gradients. For sim-
plicity, let v = f(u) be an operation that takes a scalar input u and whose derivative is zero or
undefined. The STE then approximates the partial derivative ∂L/∂u by

∂L
∂u

= ∂L
∂v

∂f

∂u
≈ ∂L
∂v

∂f̃

∂u
, (2.17)

where f̃ is an approximation to f that has a non-zero gradient. To put it more generally, let
v = f(u) and L(f(u)) be as in (2.15). Furthermore, let f̃ be a function with non-zero gradient
that approximates f . The STE then approximates the Jacobian-gradient product by

∇uL = J>f ∇vL ≈ J>
f̃
∇vL. (2.18)

This allows us to compute approximate non-zero gradients with respect to the parents of f ,
enabling gradient-based learning. Figure 2.2(a) illustrates the STE in terms of a computation
graph.
The success of the STE depends crucially on the selected approximation f̃ . It is important

that f and f̃ exhibit a similar functional shape. In many cases, the identity function f̃(u) = u
is a reasonable choice. Indeed, the term STE stems from the particular choice of the identity
function for which the gradient is simply passed “straight through” during backpropagation.
There are many interesting applications that arise in practice, most of which require some

sort of discretization or stochasticity. As shown in Figure 2.2(b), the identity function can be
seen as an approximation to staircase functions. Such staircase functions are heavily used as
quantizers in deep learning (see Section 4.1.2).
For the piecewise constant sign function (see Figure 2.2(c)), the hyperbolic tangent (tanh) is

a commonly used approximation. In some cases, a stochastic sign function given by

signstoch(u) =
{

1 if ε ≤ (1 + u)/2
−1 otherwise,

(2.19)

yields better results. Here, ε ∼ U([0, 1]) is drawn from a uniform distribution. Note that,
due to its stochasticity, (2.19) is not even a function, but again f̃ = tanh provides a suitable

– 22 –

2.2 Feed-Forward Deep Neural Networks

u v

(a) computation graph

−2 −1 0 1 2

−2

−1

0

1

2

u

f
(u
)

f(u)

f̃(u)

f̃ ′(u)

(b) round(u)

−3 −2 −1 0 1 2 3

−1

0

1

u

f
(u
)

f(u)

f̃(u)

f̃ ′(u)

(c) sign(u)

Figure 2.2: STE: (a) Computation graph: Green boxes indicate differentiable operations. Red boxes indi-
cate piecewise constant functions whose derivative is zero almost everywhere. During forward
propagation, the red path is followed. During backward propagation, the red boxes are avoided by
following the green path. (b) The zero derivative of the staircase function f(u) is approximated
by the gradient of the identity function f̃(u). (c) The zero derivative of the sign function f(u)
is approximated by the derivative of f̃(u) = tanh(u).

approximation for its derivative. The sign function is commonly used as a binary activation
function in DNNs (see Section 4.1.2). Other applications of binary variables include binary
gating functions and binary representations that enable a fast search in suitable data structures
(e.g., semantic hashing [15]).
Consider the argmax function defined on u ∈ RD that computes a one-hot vector ei as

argmax(u) = ei ⇐⇒ ui = max{u1, . . . , uD}. (2.20)

A differentiable approximation is obtained by the softmax function

softmax(u) =
(

exp(u1)∑D
i=1 exp(ui)

, · · · , exp(uD)∑D
i=1 exp(ui)

)
. (2.21)

The one-hot version of the argmax is a convenient gating function to select among multiple
options. For instance, we employ the argmax function in our structure learning approach in
Chapter 7 to select a suitable parent in BNs.
These examples show that the STE is commonly used for various kinds of discretizations. We

emphasize that applying the STE is fundamentally different from training with the differentiable
approximation f̃ and using f only after training has finished (e.g., performing quantization as
a post-processing step). In many cases, this would cause a substantial mismatch between the
model behavior at training and test-time. Therefore, we typically expect the STE to yield
improved results. Note that recent works provide more insights into the STE, e.g., [16].
The STE has been heavily used in the deep learning literature. In Chapter 4 we will encounter

several works relying on the STE to improve resource efficiency in DNNs. Moreover, the STE
is an important component of our proposed methods in Chapter 7 for structure learning and
quantization in BN classifiers.

2.2 Feed-Forward Deep Neural Networks

DNNs are a class of function approximators that are heavily used for supervised learning. We
start our discussion with the basic principles of DNNs and provide some intuitions about their
inner workings. Then, we formally introduce the basic building blocks, linear operations and
nonlinear activations, before we turn to more recent concepts such as dropout and batch nor-

– 23 –

2 Machine Learning and Deep Neural Networks

malization. Finally, we end our discussion with a brief overview of the progression of DNN
architecture trends in the past decade.

2.2.1 The Basic Layout of Deep Neural Networks

A DNN is typically organized as a sequence of layers. Each layer takes the output of its preceding
layer as input which is then processed to generate the input for the subsequent layer. More
formally, a vanilla feed-forward DNN with L layers is a function that maps an input x0 to an
output xL by applying the iterative computation

al = Wl ⊗ xl−1 + wl
0, (2.22)

xl = hl(al). (2.23)

Here, ⊗ denotes a linear operation governed by weights Wl, wl
0 is a bias vector, and hl is a

nonlinear activation function. We refer to al as the activations and to xl as the layer’s output.
Individual dimensions i of a layer are commonly referred to as neurons, irrespective of their role
as activation ali or layer output xli. The first layer l = 1 is called input layer and the last layer L
is called output layer. Intermediate layers 1 ≤ l < L are commonly referred to as hidden layers.
The parameters θ of a vanilla DNN are given by the set of all weights W = (W1, . . . ,WL) and

the set of all bias vectors w0 = (w1
0, . . . ,wL

0). Nevertheless, the parameters of a DNN are often
collectively referred to as weights which comprises both the weights W and the bias vectors w0.
If a distinction between weights and bias vectors is important, this will be explicitly mentioned.
Throughout this thesis we denote individual weights by lowercase w ∈W.

There is some debate about when a neural network is entitled to carry the attribute deep,
especially since we have observed a trend towards ever increasing numbers of layers and the fact
that depth is somewhat relative. Nevertheless, throughout this thesis we will stick to the most
common convention, i.e., it holds that L > 1.

DNNs are universal function approximators, meaning that any continuous function can be
approximated arbitrarily well with a DNN, given a sufficient number of neurons [8]. Interestingly,
this also holds for only a single hidden layer (L > 1), but recent advances in deep learning indicate
that deeper architectures achieve this using fewer neurons in total. By inspecting (2.22) and
(2.23), it is evident that the expressive power of a DNN stems from its nonlinear activation
function hl. Surprisingly, very simple nonlinearities are sufficient (see below).

Before we delve into the details and explain the individual parts of a DNN, we want to give
some intuition of what a DNN computes. On a high level, it is intuitive to think of a DNN
as a feature extractor where different layers detect features at varying abstraction levels. More
specifically, each neuron computes a numerical value representing the presence or absence of a
specific property in the input x0. While the first layer of a DNN computes values based on the
raw input features x0, subsequent layers have already access to numerical values xl−1 computed
in a very specific way by the preceding layers. Therefore, we expect that the early layers of a
DNN detect low-level features whereas neurons in deeper layers detect high-level features.
To what particular feature a neuron really corresponds is in general difficult to answer. It is

perhaps also too simplistic to think that each neuron corresponds to a single feature. It is more
realistic that several neurons compute several features in an intertwined way. This property
makes DNNs hard to interpret which is one of their major weaknesses that must be considered
when deploying DNNs in real-world applications. For instance, in a medical application it is
very unlikely that DNNs will be part of a fully automatic system in the near future whereas it
is conceivable that a DNN is used to assist experts in making their decisions. However, there
is currently a substantial amount of research concerned with the interpretation of DNNs and
developing more interpretable DNN architectures in the first place.

– 24 –

2.2 Feed-Forward Deep Neural Networks

Activation Functions

Common nonlinear activation functions hl(a) of hidden layers are the ReLU function max(a, 0)
and sigmoid functions such as tanh(a) = (exp(a)−exp(−a))/(exp(a)+exp(−a)) and the logistic
sigmoid sigm(a) = (1 + exp(−a))−1. In the context of resource-efficient DNNs, the sign function
sign(a) = I[a ≥ 0]− I[a < 0] and the Heaviside step function I[a ≥ 0] are widely used activation
functions.

Output Activation Functions

The activation function hL of the output layer depends on the type of prediction task. For
regression, the output activation function is the identity hL(a) = a, for binary classification,
it is the logistic sigmoid hL(a) = sigm(a), and for multiclass classification, it is the softmax
function hL(a) = softmax(a) as defined in (2.21). These particular output activation functions
are convenient since they allow us to interpret the DNN output xL as parameters of a condi-
tional distribution p(y |x0) that is used to define a probabilistic predictor. In particular, for
regression, the outputs are typically assumed to be normally distributed with mean xL and
fixed (or homoscedastic) variance β2, i.e., y ∼ N (xL, Iβ2) where I is the identity matrix. To ob-
tain input-dependent (or heteroscedastic) variance β2(x0), it is common to introduce additional
output neurons that explicitly model the variance.7 For binary classification, the output of the
logistic sigmoid, xLi ∈ [0, 1], is interpreted as xLi = p(Yi = 1 |x0). For multiclass classification,
the softmax output xL is a probability vector (i.e., xLi ≥ 0 and ∑i x

L
i = 1) that is interpreted

as xLi = p(Y = i |x0). In either case, the predicted value of the DNN is computed as the most
probable value according to

f̂(x0) = argmax
y

p(y |x0). (2.24)

We emphasize that one needs to be cautious when interpreting the conditional probabilities
p(y |x0) as prediction confidences. These probabilities are often spurious and do not provide
meaningful uncertainties for inputs x0 that are not close to the training data. Better prediction
uncertainties are obtained with the Bayesian framework discussed in Chapter 3.

Fully Connected Layers

There are essentially two types of linear transformations ⊗, namely (i) matrix-vector multipli-
cations and (ii) linear convolutions. In case of a matrix-vector multiplication, the corresponding
layer is also called a fully connected layer since every neuron xli depends on every neuron xl−1

j

from the previous layer. This is illustrated in Figure 2.3(a).
The linear transformation of layer l is determined by a weight matrix Wl ∈ Rdl×dl−1 which

transforms a dl−1-dimensional vector into a dl-dimensional vector. The number of dimensions
dl are tunable hyperparameters that determine the structure of the DNN.
Fully connected layers are typically used when the inputs xl−1 do not exhibit any a priori

known structure among the individual dimensions that can be easily exploited. Fully connected
layers are sometimes called dense layers due to the generally dense (i.e., non-sparse) matrix
structure of Wl.

Convolutional Layers

A layer that computes a linear convolution is called a convolutional layer, and we call a DNN that
employs at least one convolutional layer a convolutional neural network (CNN). Convolutions

7 As we will see in Chapter 3, heteroscedastic variance can also be achieved through parameter uncertainty in
the Bayesian framework.

– 25 –

2 Machine Learning and Deep Neural Networks

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
5

xl−1
6

al
1

al
2

al
3

al
4

al
5

al
6

Wl

(a) fully connected layer

W

H

dl−1

(b) convolutional layer

W

H

(c) pooling

Figure 2.3: DNN building blocks. (a) In a fully connected layer, every input neuron xl−1
j is connected to

every output neuron ali via a weight wli,j. (b) 3 × 3 convolution. Only a single output feature
map is shown. The spatial locations in the output are computed by shifting the 3× 3 kernel over
the image and computing a weighted sum over the inputs. (c) 2 × 2 pooling to downscale the
spatial dimensions.

are used if the data exhibits spatial dimensions, temporal dimensions, or both, such as image,
audio, or video data, respectively.
In this thesis, our discussion is restricted to two-dimensional image data. Two-dimensional

images can be represented as three-dimensional tensors xl ∈ Rdl×W×H where dl refers to the
number of channels (or, equivalently, feature maps), and W and H refer to the width and the
height of the image, respectively.
AKw×Kh convolution Wl∗xl−1 using a rank-4 weight tensor Wl ∈ RKw×Kh×dl−1×dl mapping

xl−1 ∈ Rdl−1×W×H to al ∈ Rdl×W×H is computed as

ali,w,h =
Kw∑
kw=1

Kh∑
kh=1

dl−1∑
j=1

wlkw,kh,j,i · x
l−1
j,idx(w,kw,Kw),idx(h,kh,Kh), (2.25)

where idx is the auxiliary indexing function

idx(pos, k,K) = pos−
⌈
K

2

⌉
+ k. (2.26)

This is illustrated in Figure 2.3(b). The bias wl
0 in (2.22) is typically added per channel, i.e.,

wl
0 ∈ Rdl . For convolutional layers, the weight tensor Wl is often called filter kernel, and

each sub-kernel Wl
i ∈ RKw×Kh×dl−1 is referred to as a filter. The activations at each spatial

location of al are computed from a spatial region of size Kw ×Kh from the input feature maps
xl−1. Since the same filter is used to compute the activations at different spatial locations, a
translation invariant detection of features is obtained.
The spatial size of features detected within an image is bounded by the receptive field, i.e., the

section of the input image x0 that influences the value of a particular spatial location in some
hidden layer. For instance, the receptive field of x1

i,w,h in the first hidden layer after applying
a 3 × 3 convolution is the 3 × 3 pixel section of x0 centered at (w, h). Note that the receptive
field increases by stacking multiple convolutional layers, e.g., performing two consecutive 3× 3
convolutions results in each output spatial location being influenced by a larger 5 × 5 region
of the input. This leads to the intuition that CNNs detect low-level features (e.g., edges and
corners) in early layers, while high-level features (e.g., objects) are detected in deeper layers.
Another form of translational invariance is achieved by pooling operations that downscale the

spatial dimensions by merging neighboring locations within a feature map. The most common
pooling operations are max pooling and average pooling which combine neighboring neurons by

– 26 –

2.2 Feed-Forward Deep Neural Networks

computing their maximum or average, respectively. This is illustrated in Figure 2.3(c). The
regions subject to the pooling operation are typically small (2×2 or 3×3) and non-overlapping,
but there is no general restriction on how to select them. Note that pooling operations also
increase the receptive field.

Computational Costs of Linear Operations

The computational costs of fully connected layers and convolutional layers are different. Com-
puting the output of a fully connected layer (i.e., a matrix-vector product) requires dl−1dl
(multiply-accumulate) operations. For the analysis of convolutional layers we assume quadratic
filters of size K×K. Computing a single output feature map of a convolutional layer requires the
computation ofWH spatial locations, each of which requires K2dl−1 operations. Since there are
dl output feature maps, computing the full output requiresWHK2dl−1dl operations. Therefore,
convolutions are considered to be memory efficient since they compute many operations for a
relatively small number of weights (i.e., K2dl−1dl).

2.2.2 Training Deep Neural Networks

The weights of a DNN are typically trained using SGD as discussed in Section 2.1.2. As we have
seen in Section 2.1.3, the required gradient ∇WL can be computed by specifying a computation
graph and performing automatic differentiation. This is convenient since the computation graph
of a DNN defined by (2.22) and (2.23) is a simple chain graph.
One key factor that has led to the widespread use of DNNs is their simple structure. The bulk

of operations to evaluate DNNs are performed by the linear operations which can be massively
parallelized. Using dedicated parallel hardware such as GPUs and TPUs, this allows for the
training of large DNN architectures on large-scale datasets.
However, despite modern hardware capabilities, DNN training still remains a very challenging

optimization task. It is not uncommon that DNN training takes on the order of days or even
weeks [6]. In the following, we explain several difficulties that arise during DNN training, before
we proceed with common solutions to these problems.

Vanishing Gradients

When training very deep architectures, the vanishing gradient problem might cause gradients to
be very small such that optimization makes insufficient progress. To understand the vanishing
gradient problem, it is convenient to consider DNNs that employ identity activation functions
h(a)= a. By ignoring the biases w0, the resulting output xL factorizes into a product of matrices

xL = WL · · ·W1x0. (2.27)

If we now assume that the eigenvalues of each Wl are less than α < 1, the layer outputs xl
are exponentially scaled by αl. As a result, the gradients ∇WlL for the early layers will be
downscaled by αL−l, preventing these layers from receiving significant updates during train-
ing. Although being a simplified view of general DNNs, these observations translate to general
nonlinear activation functions h. In fact, for many commonly used activation functions these
shrinking effects are even amplified. For instance, bounded activation functions, such as tanh
and sigm, shrink their inputs and their derivatives are small.
A similar problem arises when all the eigenvalues are larger than α > 1. This case is referred to

as the exploding gradient problem. However, exploding gradients are more relevant for recurrent
neural networks (RNNs) which we do not consider in this thesis.

– 27 –

2 Machine Learning and Deep Neural Networks

Flat Regions and Dead Neurons

Many commonly used activation functions suffer from saturation effects causing very small gra-
dients. For instance, the commonly used tanh activation function exhibits substantial variation
around zero, but flattens out for inputs of large magnitude where the derivative approaches zero.
Consequently, it would take an impractical number of update steps to escape from saturated
regions due to tiny gradients.
Unbounded activation functions such as the ReLU do not suffer from this problem. On the

downside, the ReLU function may suffer from the problem of dead neurons. This phenomenon
arises when a particular activation ali is negative for all data samples. This causes the derivative
∂L/∂ali to be zero such that the gradient with respect to all incoming weights wli,j is also zero. For
the first layer, these neurons are considered dead since the incoming weights remain unchanged
forever. For intermediate layers l > 1, the situation might change depending on weight updates
applied to preceding layers. In any case, this is an unsatisfying state. Dead neurons can be
avoided by the leaky ReLU activation function max(a, αa) for α ∈ (0, 1). The leaky ReLU
enables gradient flow for negative arguments while still exhibiting sufficient nonlinearity.

Local Optima and Saddle Points

A major issue when minimizing non-convex functions is getting stuck in bad local optima and
saddle points. However, this seems to be less of a problem when training DNNs. Although the
number of local optima is, due to weight space symmetries in DNNs, extremely large or even
uncountable, it is believed that at least for large DNN architectures most local optima are not
severely inferior to global optima [13]. Furthermore, typical SGD algorithms are not attracted to
saddle points. Optimization algorithms that are attracted to saddle points are typically second-
order methods such as Newton’s method. Second-order methods, however, are rarely used for
DNN training since they have larger memory requirements and need larger mini-batch sizes for
stochastic optimization.

Weight Initialization

Considering the number of difficulties that may arise during training, it is interesting that most of
them can be sufficiently solved by choosing appropriate initial weights. One role of initialization
is symmetry breaking, meaning that each neuron should compute a different function when
training starts. This is important since otherwise the resulting neurons would receive the same
gradient updates and continue to compute the same functions throughout the optimization
process. Consequently, initializing all weights to a constant value such as zero is not an option.
To achieve optimal symmetry breaking, the weight matrices must be orthogonal such that the

detected features are as diverse as possible. Weight initialization based on orthogonal matrices
has been studied in [17, 18]. However, generating orthogonal matrices is computationally ex-
pensive for large weight matrices. In practice, it typically suffices to sample the initial weights
from a zero-mean distribution, resulting in approximately orthogonal matrices.
The specific form of the distribution used to initialize the weights (e.g., Gaussian or uniform)

often does not have a severe impact on training. However, the variance of the selected distri-
bution is typically crucial. On the one hand, large initial weights are beneficial for symmetry
breaking but often result in saturated neurons or exploding gradients. On the other hand, small
initial weights are prone to vanishing gradients but cause neurons to operate in the linear range
(i.e., many sigmoid functions behave linearly in the vicinity of zero where learning is known to
make fast progress). Therefore, a carefully chosen trade-off is necessary.
One widely used initialization scheme is the Xavier initialization [19]. The idea is to initialize

the weights such that the activations in each layer approximately maintain their scale. As a
consequence, we expect neither vanishing gradients nor exploding gradients to be an issue at the

– 28 –

2.2 Feed-Forward Deep Neural Networks

beginning of optimization. Assume that the weights are initialized according to wl ∼ N (0, σ2)
and assume that the magnitude of the entries of xl−1 are on the order of one. Then, after
the linear transformation using Wl, the magnitude of the entries in al will be on the order of√
dl−1 · σ where dl−1 is the number of incoming connections (or fan-in in this context).8 To

maintain equal activation scale, it suffices to select the weights according to

wl ∼ N
(

0, 1
dl−1

)
. (2.28)

Since the above argument does not rely on a specific distribution but only on its variance, it is
straightforward to extend these ideas to other zero-mean distributions by adjusting the variance
accordingly. For instance, it is common to use a uniform distribution for weight initialization
according to

wl ∼ U
([
−
√

3
dl−1

,

√
3
dl−1

])
. (2.29)

The initialization schemes (2.28) and (2.29) only consider forward propagation. It is also possible
to incorporate approximate equality of gradient scale during backpropagation by replacing dl−1
with (dl−1 + dl)/2, i.e.,

wl ∼ N
(

0, 2
dl−1 + dl

)
. (2.30)

and

wl ∼ U
([
−
√

6
dl−1 + dl

,

√
6

dl−1 + dl

])
. (2.31)

Until now we have effectively ignored the nonlinear activation function in the ongoing discussion.
It turns out that these initialization methods are particularly effective for symmetric activation
functions that behave linearly around zero, such as sigm and tanh. The situation is slightly
different for the ReLU which essentially removes any variance for negative activations. The He
initialization [20] takes the ReLU activation function into account by doubling the respective
variances of (2.28) and (2.29), i.e.,

wl ∼ N
(

0, 2
dl−1

)
(2.32)

and

wl ∼ U
([
−
√

6
dl−1

,

√
6
dl−1

])
. (2.33)

The biases wl
0 are typically initialized to constant values. Common values are zero or, in conjunc-

tion with the ReLU activation, small positive values to avoid dead neurons. For classification,
the biases of the output layers can be used to compensate for a known class imbalance. For
multiclass classification, this is achieved by setting wL0,i = log p(Y = i). For binary classification,
this is achieved by setting the bias to the logits, i.e., wL0 = log p(Y = 1)/p(Y = 0).
Another initialization approach is to extract knowledge from an existing pre-trained model.

For instance, the low-level features detected by a pre-trained DNN might also be useful in a
different context. This suggests to reuse the early layers of a pre-trained DNN and to randomly
initialize the deeper layers. This is a particular instance of transfer learning [13] which is

8 For convolutions the fan-in is given by KwKhdl−1.

– 29 –

2 Machine Learning and Deep Neural Networks

interesting if data for a given task is scarce, but data for a related task is abundant (e.g.,
pre-training on ImageNet [21]). Another common approach is to use autoencoders [22] for pre-
training. Autoencoders are DNNs that are trained to predict their own inputs. By introducing
a low-dimensional bottleneck layer, the input must be transformed into a concise representation
that contains enough information to reconstruct it again. It is then expected that the early
layers detect meaningful features that can be reused in a different context. Autoencoders are
appealing since they allow us to perform pre-training using unlabeled data.
As we will see in Chapter 5, parameter initialization is a crucial component of our probabilistic

method for training discrete-valued DNNs. Our method initializes weight distributions using the
weights of a pre-trained model. This is interesting since the initialized parameters (probabilities)
have a different semantics than the parameters used for initialization (fixed weights).
While initialization methods establish certain favorable properties that hold for the initial

weights, it is not guaranteed that these properties persist throughout the course of training.
In Section 2.2.3 we introduce batch normalization, a special building block that maintains such
properties by reducing interactions between layers.

Optimization-Friendly Architectures

Despite several efforts to improve initialization methods and optimization techniques for the
training of DNNs, the most progress has arguably been made by developing DNN architec-
tures and building blocks that facilitate optimization. For instance, the nowadays commonly
used ReLU activation function did not emerge due to some underlying theoretical or biological
principles, but rather due to its appealing computational properties. In particular, the ReLU
function is easy to compute and does not suffer from the above-mentioned disadvantages of
sigmoid activation functions regarding vanishing gradients.
The vanishing gradient problem is still a common challenge when training very deep architec-

tures. It arises mainly due to the rigid feed-forward structure where each layer receives inputs
only from its immediate predecessor layer. During backpropagation, the gradient passes through
several layers, each of which potentially weakens the gradient signal that eventually arrives at
the early layers of a very deep architecture. In recent years, the concept of shortcut connections
(or, equivalently, skip connections) has evolved to an effective building block to solve this prob-
lem. By connecting layers not only to their immediate predecessor, but also to other preceding
layers, gradients can flow more directly from the output layer towards the input which mitigates
the problem of vanishing gradients. For instance, by introducing skip connections between every
other layer, the length of the shortest path from the output to the input is essentially halved.
Shortcut connections are typically implemented either by adding the inputs of several preceding
layers [23] or by stacking them [24].
Another approach to tackle the vanishing gradient problem introduces shallow side networks

that branch off from intermediate layers. By additionally training these side networks to solve
the given task, an additional gradient signal is introduced which does not need to pass through
a potentially deep stack of layers. This facilitates training especially of the earlier layers of
a DNN. After training, the side networks are discarded. For instance, such side networks are
used in the InceptionNet architecture [25]. A similar concept has been used in capsule networks
for regularization: a decoder branches off from the last hidden layer that—in addition to the
standard classification objective—is trained to reconstruct the inputs [26].

2.2.3 Batch Normalization

The literature has established a consensus that increasing the number of layers improves the
performance on difficult tasks. However, training very deep architectures has long been difficult
due to issues such as the vanishing gradient problem, among others. The vanishing gradient

– 30 –

2.2 Feed-Forward Deep Neural Networks

problem arises when several layers attenuate the backpropagated gradient such that early layers
cannot make sufficient progress during learning. By normalizing the activation al in a particular
way, batch normalization decouples the weight and activation scales of different layers such that
gradient attenuations do not accumulate over several layers.
Batch normalization is tied to stochastic mini-batch optimization. Let NB be the number of

samples in a mini-batch. Then, batch normalization transforms the data according to

aln,i ←
aln,i − µlbn,i

σlbn,i
· γlbn,i + βlbn,i (2.34)

where

µlbn,i = 1
NB

NB∑
n=1

aln,i and
(
σlbn,i

)2
= 1
NB − 1

NB∑
n=1

(
aln,i − µlbn,i

)2
. (2.35)

Here, βlbn,i and γlbn,i are trainable batch normalization parameters. For convolutions the nor-
malization is typically applied channel-wise to preserve the translation invariant detection of
features. Note that the batch statistics µlbn,i and σlbn,i are not treated as constants, but they are
computed as part of the computation graph. This is important for the resulting gradient (see
below).
It is instructive to view the computation of batch normalization in (2.34) as two consecu-

tive affine transformations. First, each activation is normalized to exhibit zero mean and unit
variance across all NB samples of the current mini-batch. Next, the activations are subject to
an affine transformation with newly introduced parameters βlbn,i and γlbn,i. This second affine
transformation is necessary to preserve the capability of the DNN to express the same family of
functions as without batch normalization.
To predict the outputs of unseen data, we use batch statistics µltr,i and σltr,i computed over the

whole training set Dtr. Since computing µltr,i and σltr,i might be time-consuming for very large
datasets, it is common practice to estimate these values using an exponential moving average
during training, i.e.,

µl,new
tr,i ← ξbnµ

l
bn,i + (1− ξbn)µl,old

tr,i , (2.36)

where ξbn ∈ (0, 1) is a hyperparameter, and we proceed similarly for σltr,i.
Note that the function computed by a DNN employing batch normalization can just as well be

represented by a DNN without batch normalization. Indeed, after training it is common to fuse
batch normalization and the preceding linear transformation to reduce the computational cost
at test-time. This might raise the question how we benefit from batch normalization at all. Most
importantly, batch normalization decouples the activation scales of different layers. The activa-
tion scale of a particular layer l now only depends on the parameters γlbn,i. In contrast, without
batch normalization the scale is determined by a complicated interaction of all preceding layers.
As a result, gradients with respect to the weights, ∇WlL, will not be guided by directions that
change the activation scale. Such directions are essentially filtered out when backpropagating
through the normalization (2.34). The same holds true for the activation means, rendering bias
vectors w0 ineffective in conjunction with batch normalization.

The independence of the scale is beneficial as it reduces the risk of exponential blowup or
shrinkage causing effects such as vanishing gradients. Furthermore, the independence of the
mean is also relevant. As most activations are expected to be closer to zero, we expect DNN
training to suffer less from saturating effects that typically occur for large activation magnitudes.
As we will see in Chapter 5, batch normalization is crucial in conjunction with binary activation
functions such as sign(a) since it encourages a significant portion of the activations to fall on
either side of zero. This helps to preserve as much information as possible after applying the

– 31 –

2 Machine Learning and Deep Neural Networks

sign activation function. In summary, batch normalization is essentially a new parameterization
of a DNN that renders the induced loss surface substantially easier to optimize.
The idea of batch normalization has been extended by approaches that whiten (decorrelate)

the activation statistics. In [27], it has been shown that whitening the activations can be seen
as approximately performing natural gradient descent. However, their approach considers the
whitening transformation as a fixed transformation and they do not backpropagate through it.
A whitening approach with backpropagation is presented in [28].
We also note that performing SGD using batch normalization affects the induced loss function.

For the sum of per-sample losses (2.10), we have assumed a loss L that decomposes into a sum
of N independent terms `n. This does not hold true for batch normalization since the batch
statistics (2.35) also depend on the other samples in the current mini-batch. Instead, the induced
loss function L can be seen as a sum over all

(N
NB

)
mini-batches of size NB where each possible

mini-batch corresponds to a single term `n of (2.10).
The dependence on other samples within a mini-batch can also be seen as a particular kind

of noise injection. From this point of view, µlbn,i and σlbn,i are random quantities determined by
the randomly selected samples in a mini-batch. Consequently, (2.34) introduces both additive
and multiplicative noise. Injecting noise during training is known to improve robustness and
to reduce overfitting. In the next section, we discuss one of the most prominent forms of noise
injection, namely dropout.

2.2.4 Dropout

Dropout belongs to a wide class of methods that inject certain kinds of noises during training.
Before we delve into the details of dropout, we provide some intuition why training can benefit
from injected noise. When introducing noise during training, it becomes more difficult for a
model to accomplish the given task. Consequently, the model must become robust to the noise
which can be exploited to achieve favorable properties of the trained model.
Consider the following examples of introducing noise during training. By injecting noise to the

inputs x0, a model becomes more robust to small variations in the input data. However, injecting
input noise can also be used to trigger a very specific behavior. For instance, autoencoders have
been trained to perform denoising by randomly corrupting the inputs [29]. Another specific
behavior is achieved by adding Gaussian noise to the outputs of a logistic sigmoid xli = sigm(ali).
The easiest way to become robust to this noise is by moving the inputs ali away from zero towards
the saturated regions of the logistic sigmoid. This causes the outputs xli to be close to binary
which is a desirable behavior in some applications, e.g., semantic hashing [15]. As we will see in
Section 4.1.2, quantization-aware training using the STE can be seen as introducing quantization
noise such that the weights become robust to quantization.
The idea of dropout is to temporarily remove randomly selected inputs and hidden neurons

from the DNN to reduce overfitting. This is accomplished by injectingmultiplicative noise during
training. More specifically, during forward propagation, we generate binary dropout masks zLn
according to zli ∼ Bernoulli(1 − pldo) where pldo ∈ (0, 1) is a hyperparameter determining the
probability of zli being zero. Then a layer employing dropout replaces the affine transformation
in (2.22) by

al = Wl ⊗ (xl−1 � zl) + wl
0, (2.37)

where � denotes element-wise multiplication. We refer to pldo as the dropout probability (or
dropout rate) of layer l. Note that the dropout mask zl of layer l must have the same shape as
the output xl−1 of layer l − 1.
There are 2|z| possible dropout masks, each of which encodes a particular DNN structure.

Therefore, dropout can be interpreted as inducing an expected loss Ldo defined by an exponen-

– 32 –

2.2 Feed-Forward Deep Neural Networks

tially large ensemble of DNNs with shared weights, i.e.,

Ldo(W;D) = Ez [Ldo(W, z;D)] . (2.38)

The ensemble view helps to explain the improved generalization of dropout with the same argu-
ments as those used for common ensemble methods. However, (2.38) also suggests that comput-
ing predictions requires exponentially many forward passes or, at least, a Monte Carlo estimate
using sufficiently many dropout masks z. Fortunately, a simple approximation requiring only a
single forward pass is necessary to obtain sufficient accuracy in practice. In particular, by scaling
the weights Wl by (1− pldo), the activations al are close to their expected value.9 Nevertheless,
evaluating many DNNs may still provide useful prediction uncertainties as suggested in [30].
Although dropout is straightforward to implement, its implications on the trained models are

far more intricate than mere perturbation of the inputs x0. During training with dropout, a
DNN cannot rely on the presence of individual features to accomplish its task. Therefore, it has
to develop a certain degree of feature redundancy to become robust enough. A different aspect
is that we generally do not believe that individual neurons of a DNN detect meaningful features
on their own, but we rather expect that features are simultaneously detected by several different
neurons in an entangled way—a phenomenon called co-adaptation of features. By randomly
removing neurons from the computation, individual neurons cannot rely on the presence of
other neurons anymore. Hence, they are forced to detect features on their own, essentially
breaking the co-adaptation. We also expect the detected features to be somehow meaningful
since they must provide useful information to accomplish the given task regardless of the specific
dropout pattern.
One shortcoming of dropout is that training takes generally longer due to the increased gradi-

ent variance. Wang and Manning [31] proposed a closed-form approximation of the intractable
objective (2.38) based on the central limit theorem. They achieve similar performance using
less training time, indicating that dropout does not inherently rely on the stochasticity during
training. Note that a closely related application of the central limit theorem is an integral part
of our method for training discrete-valued DNNs presented in Chapter 5.
By studying dropout on simpler models such as linear and logistic regression, we can gain

further useful insights. Wager et al. [32] have shown that dropout applied to linear regression
corresponds to `2-norm regularization where features exhibiting more variance are penalized
stronger. Although this does not hold exactly for DNNs, these insights are still useful to explain
the improved generalization when using dropout.
Interestingly, dropout also performs well using other noises as long as the noise is injected

in a multiplicative manner. For instance, Gaussian dropout uses dropout masks generated
according to zli ∼ N (1, αldo), where αldo takes the role of the hyperparameter pldo. In some
contexts it is more convenient to analyze dropout using Gaussian noise, e.g., in the variational
dropout framework [33]. Note that batch normalization [34] can also be seen as a means of
introducing both multiplicative and additive noise through the randomly sampled mini-batches
during SGD. This might explain both the regularization effect of batch normalization and the
reduced effectiveness of dropout when used in conjunction with batch normalization.
Dropout has also been applied to remove individual connections during training by randomly

setting the corresponding weights to zero [35]. This is a generalization of dropout since dropout
can also be seen as setting entire rows and columns of Wl to zero. For CNNs applied to image
classification, Ghiasi et al. [36] have shown that zeroing out whole blocks of neighboring pixels
outperforms setting individual pixels to zero.

9 Instead of scaling the weights, some implementations scale the dropout masks zli by 1/(1− pldo).

– 33 –

2 Machine Learning and Deep Neural Networks

2.3 A Brief History of Deep Learning Architectures
Deep learning has gained tremendous attention since 2012 when the AlexNet architecture [6]
outperformed classical computer vision methods on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) for image classification [5] by an unprecedented margin. After the success
of AlexNet, it was rather unsurprising that all winning entries of subsequent ILSVRC challenges
relied on deep learning techniques. However, the achieved progress since then is staggering and
the efficiency and accuracy of the developed architectures have improved considerably.
The ImageNet dataset for image classification [21] is a large-scale dataset containing approxi-

mately 1.2 million labeled images that must be classified into 1,000 classes. We believe that the
availability of large-scale datasets such as ImageNet along with the possibility to train large ar-
chitectures using dedicated hardware (e.g., GPUs and TPUs) are the key factors for the success
of deep learning.
We conclude this chapter with a chronological overview of the arguably most influential DNN

architectures for image classification that emerged within the past decade. By investigating the
recent progress, it becomes evident that network depth plays a crucial role for obtaining state-
of-the-art performance. Over the years, the accuracy and the depth of DNNs have gradually
increased. However, the ability to train deeper architectures did not merely arise from the ever-
growing hardware capabilities, but rather from new design principles and building blocks (e.g.,
batch normalization) that have been developed.
Although the design principles of the architectures discussed in the remainder of this section

were developed for image data (in particular, image classification), many of the techniques
have been successfully transferred to other domains as well. Note that while the individual
architectures sometimes deviate from the simplified layout presented in Section 2.2.1, they still
adhere to the core feed-forward structure organized in simple layers.

2.3.1 AlexNet
The AlexNet architecture [6] was the first DNN capable of improving performance over con-
ventional hand-crafted computer vision techniques. It achieved a top-5 error10 of 16.4% at
the ILSVRC12 challenge—an improvement of approximately 10% absolute error compared to
the runner-up entry that relied on well-established computer vision techniques at that time.
This most influential work essentially started the advent of deep learning. Since then DNNs
have spread over virtually any scientific field and achieved improved performances compared to
well-established methods in the respective fields.
The architecture consists of eight layers: five convolutional layers followed by three fully

connected layers. AlexNet was designed to optimally utilize the available hardware at that time
rather than following some clear design principles. This involves the choice of heterogeneous
filter sizes Kw ×Kh and seemingly arbitrary numbers of channels per layer dl. The bulk of the
weights (approximately 90%) are located in the first two fully connected layers. The overfitting
caused by the heavy overparameterization of these layers was reduced using dropout [9].
Some convolutional layers compute two independent paths, each computing one half of the

output channels from one half of the input channels. This corresponds to an instance of grouped
convolutions which halves the number of operations and parameters compared to a full con-
volution. The main purpose of this was to facilitate training of a larger architecture on two
GPUs. Interestingly, it took several years until grouped convolutions have regained attention as
a means of reducing model complexity (see Section 4.3.4).

10 The top-5 error reports a misclassification if the target is not within the five highest ranked predictions.

– 34 –

2.3 A Brief History of Deep Learning Architectures

2.3.2 VGGNet
The VGGNet architecture [37] was the runner-up entry at the ILSVRC14 challenge achieving
7.3% top-5 error. Compared to AlexNet, the structure of VGGNet is more homogeneous and
with up to 19 layers much deeper. The design of VGGNet is guided by two main principles.
(i) VGGNet employs mostly 3 × 3 convolutions and it increases the receptive field by stacking
several of them. (ii) After downscaling the spatial dimension with 2×2 max pooling, the number
of channels is doubled to avoid information loss.
This is in contrast to earlier architectures that often relied on larger convolutions, e.g., AlexNet

employed a 11×11 convolution in the input layer. Using several 3×3 convolutions to achieve the
same receptive field as a larger convolution does not only increase the depth of the network, but
it also increases the computational efficiency. For instance, computing two 3 × 3 convolutions
instead of a single 5× 5 convolutions reduces the number of weights and operations by a factor
of 25/18 = 1.39, and the computational gains even grow for larger receptive fields. Moreover,
by stacking several layers, additional nonlinearities are introduced, possibly increasing the ex-
pressiveness of the model. From a hardware perspective, VGGNet is often preferred over other
architectures due to its homogeneous structure.

2.3.3 InceptionNet
InceptionNet (or, equivalently, GoogLeNet) [25] won the ILSVRC14 challenge with 6.7% top-5
error using an even deeper architecture consisting of 22 layers. The main feature of this architec-
ture is the inception module which concatenates the results of several independent operations—a
1 × 1, a 3 × 3, and a 5 × 5 convolution, as well as a pooling operation—that are performed in
parallel on the inputs from the previous layer. The use of different filter sizes allows for the
detection of features at different scales within a single inception module. To reduce the compu-
tational burden, InceptionNet performs cheaper 1×1 convolutions as proposed in [38] to reduce
the number of channels immediately before the larger 3× 3 and 5× 5 convolutions.
The training of InceptionNet was aided by two shallower auxiliary networks that branch off

from earlier hidden layers. By additionally training these shallower side networks to perform
the predictive task, the gradient signal is improved and vanishing gradient effects are mitigated.
Once training has finished, these auxiliary networks are discarded.
The InceptionNet architecture has been substantially improved by exploiting various design

principles in follow-up work [39]. The computational efficiency has been improved by splitting
up expensive convolutions into several cheaper convolutions. Similarly as in VGGNet, 5 × 5
convolutions have been split up into two consecutive 3×3 convolutions. Furthermore, filters have
also been factorized along spatial dimensions to improve efficiency. For instance, approximating
a 7× 7 convolution by a 1× 7 and a 7× 1 convolution results in 49/14 = 3.5 fewer weights and
operations.
Another design principle of the follow-up work is concerned with representational bottlenecks

that impair the expressiveness of the model. Such representational bottlenecks might appear if
the dimensionality of the data is reduced too quickly, e.g., at pooling operations. To overcome
representational bottlenecks, it is proposed to not only downscale the feature maps using a
pooling operation, but also by a strided convolution executed in parallel to maintain a large
dimensionality.

2.3.4 ResNet
Although the scientific community has established a consensus that deeper architectures are ca-
pable of improving predictive performance, training became more and more difficult as depth in-
creases. Even worse, deeper models did not just fail to generalize well, but they also achieved in-
ferior training set performance compared to their shallower counterparts—a phenomenon called

– 35 –

2 Machine Learning and Deep Neural Networks

degradation problem. This was rather unsatisfying since the accuracy of a deep model obtained
by the odd construction of first training a shallower network followed by adding artificial identity
layers was hardly achievable by training the deep model from scratch.
This observation inspired the rather new paradigm of residual networks (ResNets). He et al.

[23] concluded from the above observation that identity mappings might play an important role
and layers should compute residuals that are added to the layer’s inputs, i.e.,

al = f l(xl−1,Wl) + xl−1. (2.39)

Graphically the computation of a residual block (2.39) corresponds to two parallel paths: (i)
the residual path transforming the input and (ii) the identity path (or skip connection).
Assuming that DNNs of a given depth are capable of representing a sufficiently wide range of

functions, they should also be able to represent the residual function f(x0)− x0. Consequently,
the class of representable functions using residual layers remains approximately the same. As a
result, the benefits of residual layers cannot be attributed to improved model expressiveness, but
rather to the induced loss surface being easier to optimize. It is instructive to think in terms of a
reparameterization such that weights are optimized with reference to the more natural identity
function instead of a zero function.
From the perspective of computation graphs, it becomes evident why ResNets are easier to

train. By following the identity paths from the DNN output back to the inputs, gradients do not
have to pass through several linear transformations that potentially cause vanishing or exploding
gradients. In this way, extremely deep architectures have been successfully trained, e.g., up to
152 layers on ImageNet and even up to 1,000 layers on Cifar-10. ResNet won the ILSVRC15
challenge with 3.6% top-5 error.
In follow-up work, some structural rearrangements have been made to obtain an even cleaner

identity path, further improving the learning characteristics [40]. Most notably, instead of
computing the nonlinear activation function after adding the residual to the identity path, the
nonlinear activation function has been moved completely inside the residual path. In another
follow-up work called ResNeXt [41], grouped convolutions (see Section 4.3.4) were employed to
increase the number of channels. This improves accuracy while leaving the overall computational
complexity approximately the same.

2.3.5 DenseNet

Inspired by ResNets whose skip connections have been shown to improve the learning charac-
teristics, densely connected CNNs (DenseNets) [24] drive this idea even further by connecting
each layer to every preceding layer. On a high level, DenseNets are conceptually very similar to
ResNets. Instead of adding the output and the input of a layer, DenseNets stack them.

However, the implications of stacking the layer outputs are different from adding them. Each
layer is now a direct input to every subsequent layer which further facilitates backpropagation
through shorter paths from the output to the input. Furthermore, when thinking of a DNN
in terms of carrying a state that is transformed by each layer, DenseNets make an explicit
distinction between old and new state information by design. In contrast, it is less obvious how
the state is changed in a ResNet. This allows for the use of small layers introducing only a
relatively small number of new channels per layer (the growth rate).
Nevertheless, stacking layer outputs necessarily increases the number of channels with each

layer, which might result in impractical input sizes for deeper layers. Therefore, it is proposed
to use compression layers (i.e., a 1 × 1 convolution to reduce the number of feature maps)
after downscaling the spatial dimension with pooling. Compared to ResNets, DenseNets achieve
similar performance, allow for even deeper architectures, and they are more parameter and
computation efficient.

– 36 –

2.3 A Brief History of Deep Learning Architectures

2.3.6 EfficientNet
The EfficientNet architecture [42] emerged from a thorough study of scaling architectural di-
mensions of DNNs, namely the depth (number of layers), the width (number of channels), and
the resolution (number of pixels in the input image). Extensive experiments have shown that
scaling up each of these dimensions individually quickly results in diminishing accuracy gains
whereas simultaneously scaling these dimensions considerably improves accuracy. Intuitively
this makes sense as, for instance, increasing the resolution of an image also increases the spatial
extension of interesting features which, in turn, requires a deeper architecture for an increased
receptive field to detect these features. The proposed compound scaling method scales each of
these dimensions simultaneously by constant factors determined using a grid search.
The particular EfficientNet model was discovered using NAS [43, 44] (see Section 4.3.5) to

find a relatively small but decently performing DNN which was subsequently scaled up using the
proposed compound scaling approach. NAS is currently a very active research area concerned
with the automatic discovery of good DNN architectures within a prespecified space of architec-
tures. The specific architecture space used for EfficientNet comprises building blocks that are
specifically tailored towards resource-efficient computation such as mobile inverted bottleneck
convolutions [45].
By scaling up the discovered EfficientNet architecture using the proposed compound scaling,

a whole set of architectures of various complexities can be obtained. In particular, their largest
reported model achieves overall state-of-the-art performance. Nevertheless, the proposed ap-
proach is also remarkable as it surpasses the performance of the previous state of the art while
being substantially more efficient. When comparing the smallest EfficientNet architecture (the
one obtained with NAS) to AlexNet, the computational gains have improved by a factor of 44
within a period of only seven years [46]. This shows that progress of deep learning cannot be
merely attributed to larger datasets and increased computational capabilities, but rather to im-
proved algorithms and a better understanding of architecture design. Interestingly, EfficientNet
was designed by starting from a small model which is subsequently scaled up. This is opposed
to many common network pruning approaches (see Section 4.2) that start from a large model
and then prune unnecessary parts to obtain an efficient architecture.

– 37 –

Probabilistic Methods for Resource Efficiency in Machine Learning

3
Bayesian Deep Learning

In the previous chapter, we considered loss function minimization to obtain a fixed set of pa-
rameters θ. Once those parameters are found, we are committed to using these parameters
for all our future predictions. Any valuable information of the training data that was not ab-
sorbed during the training process is essentially lost. This chapter introduces the framework of
Bayesian inference which does not suffer from this information loss. The core idea of Bayesian
inference is to consider the parameters θ as random quantities. Using Bayes’ rule, this allows
us to summarize the whole information of our prior belief (the prior distribution) and empirical
observations (the training data via the likelihood) in a posterior distribution over the param-
eters. Subsequently, the whole parameter space is considered by computing expectations with
respect to this posterior.
The Bayesian framework has several appealing properties. It is less prone to overfitting, it

naturally handles the online setting where data samples arrive in an indefinite sequence, and it
provides a well-justified means of obtaining prediction uncertainties. However, exact Bayesian
inference requires solving integrals that are often intractable. As a consequence, the field of
approximate Bayesian inference is a very active research area devoted to developing effective
approximations in various contexts.
We start our discussion by introducing the basic concepts of Bayesian inference and provide

examples where exact inference is possible. We continue with common approximate Bayesian
inference techniques for models where exact inference is not possible. The focus of our discussion
is on the two most widely used approximation schemes, i.e., variational inference and sampling
methods. Our discussion also shows how loss function minimization as discussed in the previous
chapter can be seen as a specific way of performing approximate Bayesian inference. After a
general treatment of these topics, we turn to the specific field of Bayesian deep learning and
show how these techniques can be applied to DNNs.

3.1 Bayesian Inference

The core idea of Bayesian learning is to treat the parameters θ as uncertain quantities by
modeling them as random variables. We consider a parametric family of distributions p(D|θ) to
model a given dataset D. In this context, p(D|θ) is referred to as the likelihood of the parameters
θ. Note that, to emphasize that the parameters θ are now random variables, they appear in
the condition rather than in the subscript. The dataset D may contain either unlabeled data
D = {xn}Nn=1 or, as in the previous chapter, labeled data D = {(xn,yn)}Nn=1. We assume that
the individual samples xn are conditionally independent given the parameters θ, i.e., they are
sampled i.i.d. Then, for unlabeled data, the distribution p(D|θ) factorizes as

p(D|θ) =
N∏
n=1

p(xn |θ). (3.1)

– 39 –

3 Bayesian Deep Learning

For labeled data, the distribution factorizes as

p(D|θ) =
N∏
n=1

p(yn |xn,θ)p(xn |θ). (3.2)

For the labeled case, we adopt the common practice and do not model the distribution p(x |θ)
over the inputs. This corresponds to assuming a uniform distribution over x. For the sake of
brevity, we consider either the labeled or the unlabeled data case in the following discussions.
Nevertheless, the conclusions are valid for both cases.
To introduce uncertainties over the parameters θ, the first step of Bayesian learning is to

introduce a prior distribution p(θ) that expresses our initial belief about the parameters. If no
particular prior knowledge is available, the prior is typically selected to be rather uninformative
such that no parameters are assigned a probability of zero. As discussed in Section 2.1.1, for some
models it is reasonable to assume that their parameters are small, suggesting a prior distribution
assigning more mass to parameters close to zero. One might also select a more informative prior
to incorporate expert knowledge or experience gained from previous experiments. For some
applications it is even reasonable to exclude certain parameter configurations θ by setting their
prior mass to zero. This can be used to introduce hard constraints over the parameters θ,
e.g., sparsity or equality constraints. For instance, convolutional layers in CNNs can be seen as
arising from a Bayesian treatment of fully connected layers where the weight matrix W exhibits
a certain sparsity pattern and several weights are shared.
In the next step of Bayesian learning, a set of data samples D is collected. We can then

employ Bayes’ theorem to update our prior belief about the parameters according to

p(θ |D) = p(D|θ)p(θ)
p(D) ∝ p(D|θ)p(θ). (3.3)

The left hand side of (3.3) is known as the posterior distribution over the parameters, and the
denominator p(D) is a normalization constant referred to as marginal likelihood or evidence. The
posterior summarizes the prior knowledge and the whole information about the parameters θ
contained in the dataset D. Subsequently, the posterior is used to obtain a predictive distribution
by marginalizing out the parameters θ as

p(x |D) =
∫
Θ
p(x,θ |D)dθ =

∫
Θ
p(x |θ)p(θ |D)dθ = Eθ∼p(θ|D) [p(x |θ)] , (3.4)

where we have used the conditional independence assumption in the second equality. Equation
(3.4) has several appealing properties. Rather than computing predictions based on a single
model θ, the predictive distribution (3.4) is obtained by computing predictions using every
possible model θ ∈ Θ and averaging their outputs according to the posterior p(θ |D).

This avoids several problems associated with predictions based on individual models.11 Most
importantly, the Bayesian framework is much less susceptible to overfitting. This renders
Bayesian inference especially interesting for applications where data is scarce. In fact, as we
will see in Section 3.2.1, certain regularizers emerge from loss functions whose minima corre-
spond to modes in the posterior distribution.
Moreover, the probabilistic semantics obtained via the predictive distribution (3.4) are well

supported through the Bayesian framework. Consequently, the prediction uncertainties from
(3.4) typically reflect our intuition well. In contrast, the uncertainties from p(x |θ) obtained
using a point estimate θ are often spurious and yield overconfident predictions [30].
The Bayesian framework also provides an elegant framework to handle the online learning

setting where samples xn arrive as an indefinite sequence and are only processed once and never
considered again. For this purpose, let D(N) = {xn}Nn=1 be a dataset containing N samples such
11 Individual models are also called point estimates in this context.

– 40 –

3.1 Bayesian Inference

that D(N) ⊂ D(N+1) for all N . We can then define a posterior distribution after observing the
first N samples as

p(θ |D(N)) ∝ p(D(N) |θ)p(θ). (3.5)

When we observe another data sample xN+1, the posterior (3.5) obtained from the first N
samples can serve as a new prior to obtain an updated posterior as

p(θ |D(N+1)) ∝ p(xN+1 |θ)p(θ |D(N)). (3.6)

Despite all these appealing properties of Bayesian inference, its practical application is still
limited. In most cases, the posterior distribution exhibits a complicated structure, rendering
the required computations (e.g., marginalization) difficult if not infeasible. For instance, when
employing Bayesian inference for DNNs, the posterior p(W |D) inherits all the unfavorable
computational properties of DNNs such as their high nonlinearity. In these cases, we have to
rely on approximation techniques which are discussed in a general context in Section 3.2 and
specifically for DNNs in Sections 3.3–3.5.
For some models and distributions, however, the posterior distribution admits a concise rep-

resentation, reducing the knowledge contained in a dataset D to only a few numerical values.
Furthermore, these models allow us to compute the predictive distribution (3.4) in closed form.
In the following, we discuss such a class of models, namely the exponential family.

3.1.1 Example: The Exponential Family and Conjugate Priors
Exact Bayesian inference (3.3) and computing the posterior predictive distribution (3.4) is gener-
ally infeasible for distributions with high-dimensional parameter spaces Θ. However, for certain
combinations of the prior and the likelihood, posterior inference admits an exact solution. In
this section, we discuss an entire family of distributions with favorable properties for posterior
inference, namely the exponential family. Many familiar distributions belong to the exponential
family, e.g., the Gaussian, Bernoulli, categorical, exponential, and the gamma distribution.
More specifically, a distribution belongs to the exponential family if its pdf or pmf can be

phrased as

p(x |θ) = h(x) exp
(
θ>φ(x)−A(θ)

)
. (3.7)

Here φ : RD → RM is called the sufficient statistics function, θ ∈ RM are the natural parame-
ters12, A(θ) is called the log-partition function that ensures normalization, and h(x) is the base
measure.
Distributions from the exponential family have several interesting properties, many of which

stem from a connection to convex analysis [47]. We restrict our discussion to a particular
property that is especially appealing for Bayesian inference, namely the existence of conjugate
priors. A prior p(θ) is said to be conjugate to a likelihood function p(D|θ), if the induced
posterior p(θ |D) according to (3.3) exhibits the same form as the prior. In our case, this means
that the posterior is from the same exponential family as the prior.

To see why this holds, consider the prior

p(θ |α, N0) ∝ exp
(
θ>α−N0A(θ)

)
, (3.8)

where (α, N0) are natural parameters and the sufficient statistics are θ 7→ (θ,−A(θ)). The

12 The parameters are distinctively called natural, since exponential family distributions are typically represented
in a non-exponential family style using a different parameterization.

– 41 –

3 Bayesian Deep Learning

likelihood for a dataset D containing N i.i.d. samples can be written as

p(D|θ) =
(

N∏
n=1

h(xn)
)

exp
(
θ>
(

N∑
n=1

φ(xn)
)
−NA(θ)

)
. (3.9)

Multiplying the prior (3.8) with the likelihood (3.9) yields the posterior

p(θ |D) ∝ exp
(
θ>
(
α+

N∑
n=1

φ(xn)
)
− (N0 +N)A(θ)

)
, (3.10)

which is of the same form as the prior (3.8).
The form of the posterior (3.10) reveals interesting properties of the posterior. First, the

posterior depends on the data only via a sum of the sufficient statistics over the dataset D.
Consequently, the entire information of the dataset D can be compressed to an M -dimensional
vector. This is especially convenient from a computational perspective as it allows us to perform
online inference by simply updating the sum of the sufficient statistics. Furthermore, the prior
has the intuitive interpretation as observing N0 pseudo samples whose sum of sufficient statistics
equals α.

The key property that allows us to perform exact inference for exponential family distributions
and conjugate priors is the ability to exactly compute the normalization factor p(D) in (3.3).
From this property and by observing that the predictive distribution factorizes as p(x |D) =
p(x,D)/p(D), it immediately follows that computing the predictive distribution (3.4) is feasible
in the exponential family setting with conjugate priors.

3.1.2 Bayesian Networks
BNs provide an elegant framework to define properties of a multivariate distribution by means
of a graphical representation. We introduce BNs here because they allow us to put posterior
inference as introduced above in a broader context. Moreover, we will refer to them in the
remainder of this thesis on several occasions; particularly in Chapter 7 which is fully dedicated
to a specific model class known as BN classifiers.
Let X = {X1, . . . , XD} be a set of random variables. Furthermore, let G be a directed acyclic

graph whose nodes correspond to X. Then a BN with graph structure G defines a factorization
of the joint distribution p(X) as

p(X) =
D∏
i=1

p(Xi | pa(Xi)), (3.11)

where pa(Xi) are the parents of Xi in G. For nodes Xi without parents, the corresponding factor
in (3.11) is an unconditional distribution p(Xi). This factorization is convenient as it allows us
to specify the joint distribution p(X) in terms of local factors p(Xi | pa(Xi)). The factorization
in (3.11) is general since any distribution can be factorized in this way by the product rule of
probability, i.e.,

p(X) = p(X1)
D∏
i=2

p(Xi |X1, . . . , Xi−1). (3.12)

The corresponding graph G of (3.12) is complete in the sense that it contains a directed edge
between every pair of variables Xi.
However, it turns out that BNs reveal interesting properties of the underlying distributions

only if edges are missing. The graph structure G also encodes a set of conditional independence
assumptions that hold for any distribution that factorizes according to (3.11). For instance, one

– 42 –

3.1 Bayesian Inference

θ

D

(a) posterior inference

Wl

yn xn

γ2

β2

N

L

(b) Bayesian DNN (global view)

x0 a1 x1 a2 xL−1 aL y

W1 W2 WL

(c) Bayesian DNN (local view)

Figure 3.1: (a) Simple graphical model of p(θ,D) = p(D|θ)p(θ). (b) A Bayesian model of DNNs as a BN.
(c) BN of a Bayesian DNN at the local level of individual layers.

can show that for a given graph G, a variable Xi is conditionally independent of non-descendants
Xj given its parents pa(Xi). The set of independencies obtained in this way are called local
independencies. These local independencies, however, are only a subset of all independencies
encoded by a graph G. We note that a characterization of the complete set of conditional
independencies encoded by G is provided by the d-separation criterion. In short, d-separation
characterizes conditional independence statements between two nodes Xi and Xj through a
certain blocking property of undirected paths between them. We refer to [48] for a thorough
treatment of the topic.
Therefore, BNs establish a link between distributional properties of p and graph theoretic

properties of G. Besides these interesting theoretical properties, they provide a practical tool to
formally specify distributions by incorporating domain knowledge. For instance, the edges in G
might have a direct interpretation as causal relationships among the connected variables. This
often implies a certain degree of interpretability of the resulting models. Not least of all, BNs
provide a powerful language to talk about probability distributions in more intuitive terms.
We can now represent the simple Bayesian model p(θ,D) = p(D|θ)p(θ) from above in terms

of a simple BN. This is shown in Figure 3.1(a). In our representation, shaded nodes indicate
that the corresponding values are observed. The direction of the edge indicates the generative
process of how the dataset D is generated from a distribution p(D|θ). In this light, inferring
the posterior distribution p(θ |D) can be seen as deducing the reverse direction of the generative
process. We emphasize that BNs are much more powerful when used to model probabilistic
inference scenarios for graphs with more structure than our simple posterior inference sample
shown here.

Deep Neural Networks as Bayesian Networks

Next, we show how DNNs—when viewed in a Bayesian framework—can be seen as a specific BN.
Assume a prior distribution p(W |γ2) over the weights governed by a variance hyperparameter
γ2. The corresponding BN is shown in Figure 3.1(b). We use the plate notation (i.e., the
boxes around certain variables) to denote that the corresponding variables within the boxes are

– 43 –

3 Bayesian Deep Learning

replicated L and N times. The conditional distribution over the targets

p(yn |xn,W, [β2]) (3.13)

is specified by the output of the DNN. The square brackets in (3.13) and the dashed circle denote
that the output variance β2 is only relevant for regression (see Section 3.2.1). Furthermore, the
graph explicitly shows the hyperparameters γ2 and β2, but since these are known quantities they
could also be absorbed into p(W) and (3.13), respectively. Using the assumption that p(W)
factorizes over the individual layers as

p(W) =
L∏
l=1

p(Wl), (3.14)

we obtain a more fine-grained BN at the local level of individual layers. This is shown in Fig-
ure 3.1(c). Any hyperparameters governing the weights W and the outputs y are not explicitly
shown. We can see that the uncertainty from the weight distributions p(Wl) induces a proba-
bility distribution over the hidden layers p(al |Wl,xl−1). This allows for the interpretation that
DNNs with uncertain weights propagate distributions from layer to layer. This process ends at
the output layer where we eventually obtain a distribution over the targets y. Indeed, we will
utilize this view of DNNs extensively in Section 3.3 and Section 3.4 to perform approximate
inference for Bayesian DNNs.

3.2 Approximate Bayesian Inference

For most models, exact Bayesian inference is intractable and we must resort to approximations.
In this section, we introduce common approximation techniques in a general setting, before we
show how they can be applied to DNNs in particular in Sections 3.3–3.5.
Although typically not considered as Bayesian methods, we start our discussion with point es-

timates and show how computing a mode in a posterior distribution p(θ |D) relates to regularized
loss functions. We continue our discussion with the Laplace method which utilizes curvature
information from the log-posterior to approximate the posterior by a Gaussian centered at a
mode.
The main part of this section discusses the two predominant approximate Bayesian inference

methods, i.e., variational inference and sampling methods. These two approaches operate in a
fundamentally different way. On the one hand, variational inference methods approximate the
posterior by a simpler distribution. Variational inference methods are typically biased in the
sense that they are unable to recover the true posterior that is typically not contained in the
family of simpler distributions. However, these methods enjoy properties from the rich opti-
mization literature [49] to determine when no further approximation progress can be expected.
On the other hand, sampling based methods approximate the posterior distribution by gener-
ating a collection of samples that are representative for the posterior. Sampling based methods
are guaranteed to asymptotically recover the true posterior, but it is difficult to evaluate the
approximation quality when stopping the algorithm after finite time.

3.2.1 Maximum Likelihood and Maximum A Posteriori Estimation

One of the most widely used paradigms to estimate model parameters θ that explain a given
dataset D are the maximum a posteriori (MAP) and the maximum likelihood (ML) principles.
The MAP approach aims to find a point of maximum density (or mass) in the posterior distri-
bution by means of optimization, therefore essentially condensing the whole posterior to a single

– 44 –

3.2 Approximate Bayesian Inference

point estimate. The ML approach is very similar in that it aims to find a point of maximum
likelihood p(D|θ). In fact, ML estimation can be seen as MAP estimation under a uniform prior
p(θ).
We apply the common assumption of an i.i.d. dataset D such that the likelihood p(D|θ)

factorizes over the individual samples. Furthermore, it is common to apply the logarithm which
does not change the location of optimal parameters θMAP and simplifies optimization by turning
products into sums. Then, MAP estimation is performed by computing

θMAP = argmax
θ

N∑
n=1

log p(yn |xn,θ) + log p(θ) + const, (3.15)

where the constant arising from log p(D) can be ignored for optimization. We will now show
how the commonly used loss functions discussed in Section 2.1.1 emerge from MAP estimation.
Without specific knowledge about the parameters, it is common to assume a Gaussian prior with
zero mean and fixed variance γ2, i.e., θ ∼ N (0, Iγ2). For regression, it is common to assume
that the targets y are normally distributed according to

y ∼ N (f̂θ(x), β2), (3.16)

where f̂θ is some model governed by parameters θ (e.g., a DNN) and β2 is some fixed variance.
For this specific case, the MAP parameters (3.15) are given by

θMAP = argmax
θ

− 1
2β2

N∑
n=1

(
f̂θ(xn)− yn

)2
− 1

2γ2

∑
θ∈θ

θ2 + const, (3.17)

where additive terms, corresponding to the normalization factors of the Gaussian distributions,
have been absorbed into the constant. Note that (3.17) is equivalent to minimizing the regular-
ized loss (2.9) for a suitable trade-off parameter λ and Ldata being the MSE loss (2.6).
We can proceed similarly for classification problems. For binary classification, the target

y ∈ {0, 1} is assumed to be Bernoulli distributed with pmf

p(y |x,θ) = f̂θ(x)y · (1− f̂θ(x))1−y, (3.18)

where f̂θ(x) ∈ [0, 1] (e.g., the output of a logistic sigmoid). For the likelihood (3.18), the MAP
parameters are given by

θMAP = argmax
θ

N∑
n=1

(
y log f̂θ(xn) + (1− y) log(1− f̂θ(xn))

)
− 1

2γ2

∑
θ∈θ

θ2 + const, (3.19)

which corresponds to the binary cross-entropy loss (2.7). For multiclass classification, the target
y ∈ {1, . . . , C} is assumed to be categorically distributed with pmf

p(y |x,θ) =
C∏

y′=1

(
f̂θ(x)y′

)I[y=y′]
= f̂θ(x)y, (3.20)

where ∑Cy′=1 f̂θ(x)y′ = 1 and f̂θ(x)y′ ≥ 0 (e.g, the output of a softmax). The resulting MAP
parameters are given by

θMAP = argmax
θ

N∑
n=1

(
log f̂θ(xn)yn

)
− 1

2γ2

∑
θ∈θ

θ2 + const. (3.21)

Once again this recovers a well-known loss function, i.e., the multiclass cross-entropy loss (2.8).

– 45 –

3 Bayesian Deep Learning

−2 −1 0 1 2 3 4

−2

−1

0

1

2

x

f̂ θ
(x
)
=
θ 1

+
θ 2
x

f̂θ=0(x)

f̂θML
(x)

f̂θMAP(x)

(a) function space

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.2

0

0.2

0.4

0.6

0.8

θML

θMAP

θ1

θ 2

p(θ)

p(D|θ)
p(θ |D)

(b) parameter space

Figure 3.2: Bayesian inference for the model fθ(x) = θ1 + θ2x. (a) Function space view. The red circles
correspond to the labeled dataset D. The three lines correspond to the functions fθ(x) obtained for
the prior mean θ = 0, the ML parameters θML, and the MAP parameters θMAP. (b) Parameter
space view. Contour lines of the prior p(θ), the likelihood p(D|θ), and the posterior p(θ |D).

Note that regression introduces an additional variance hyperparameter β2 in the likelihood
(3.16). This hyperparameter specifies the degree of label noise that we assume for the continuous
targets y. For classification, we typically do not assume label noise and, therefore, no additional
parameter is required.
Figure 3.2 illustrates a simple linear regression example for the model fθ(x) = θ1 + θ2x. The

ML parameters θML provide the best fit to the given data in the least squares sense. Compared
to θML, the MAP parameters θMAP are pulled towards the origin due to the prior p(θ) that
assumes small parameter values. Consequently, the function for θMAP is somewhat simpler than
that for θML: It exhibits a smaller slope (θ2) and its y-intercept (θ1) is closer to zero.
Although MAP estimation is typically not considered as a Bayesian method, we will see that

it can be interpreted as the special case of performing variational inference where the posterior
is approximated by a single point mass δθ. Computing expectations with respect to this point
mass δθ then reduces to simply evaluating the model function f̂θ.

3.2.2 Laplace’s Method

While point estimates only consider the parameters θMAP at a point of maximum density in
the posterior p(θ |D), Laplace’s method additionally takes the curvature of log p(θ |D) at θMAP
into account. In particular, Laplace’s method approximates the posterior p(θ |D) by a Gaussian
distribution q(θ) centered at a mode θMAP such that the curvature of log p(θ |D) and log q(θ)
at θMAP are equal. This is accomplished by computing a second-order Taylor expansion of
log p(θ |D) around a mode θMAP, i.e.,

log p(θ |D) ≈ log p(θMAP |D)− 1
2 (θ − θMAP)> (−H) (θ − θMAP) , (3.22)

where

H = ∂2

∂θi∂θj
log p(θ |D)

∣∣∣∣∣
θ=θMAP

. (3.23)

– 46 –

3.2 Approximate Bayesian Inference

Note that since the Taylor expansion is computed around a maximum, the first-order term
vanishes and −H is positive semidefinite. Exponentiation of (3.22) yields

p(θ |D) ≈ q(θ) ∝ exp
(
−1

2 (θ − θMAP)> (−H) (θ − θMAP)
)
, (3.24)

which has the form of a Gaussian distribution with mean θMAP and covariance matrix (−H)−1.
The normalization constant of (3.24) is given by (2π)−D/2 det(−H)1/2, where D denotes the
dimensionality of θ.

In contrast to point estimates, the Laplace approximation provides uncertainty information
around a mode θMAP. These uncertainties often allow for better approximations of predictive
distributions by replacing p(θ |D) in (3.4) by q(θ). The Gaussian approximation is convenient as
it often admits a closed-form solution of the expectation in (3.4). In cases where no closed-form
solution is available, the expectation (3.4) can still be approximated by Monte Carlo averaging
using samples from the Gaussian distribution q(θ).
The Laplace approximation typically provides good estimates if many data points are ob-

served and if the true distribution tends to be normally distributed as a consequence of the
central limit theorem. Furthermore, many distributions are known to become unimodal in the
large sample limit where the posterior p(θ |D) concentrates around the true parameters, which
justifies the approximation with a unimodal distribution. However, for multimodal distributions,
the approximation quality might depend heavily on the particular MAP estimate θMAP discov-
ered during optimization. Nevertheless, the benefits of the Laplace approximation over point
estimates are questionable considering that it also only depends on properties of the posterior
p(θ |D) at a mode θMAP. Consequently, important global properties might not be modeled well.

3.2.3 Variational Inference

Variational inference is concerned with approximating the intractable posterior p(θ |D) by a
simpler distribution q(θ). Subsequently, we can approximate expectations such as the predictive
distribution (3.4) by replacing the true posterior p(θ |D) with the approximation q(θ).

Different variational inference methods can essentially be distinguished by (i) their choice of a
particular family of approximating distributions {qν} and (ii) by the criterion according to which
a particular element qν is selected from that family. Here, ν denotes the variational parameters
that specify a particular distribution, e.g., the mean and the covariance matrix of a Gaussian
distribution.
Considering the choice of the particular family of distributions {qν}, one aims to satisfy

two opposing objectives. On the one hand, the family of distributions should be rich enough
to contain distributions that are in some sense close to the true posterior p(θ |D). On the
other hand, the distribution qν(θ) should ideally admit closed-form solutions to the predictive
distribution (3.4) or allow for efficient Monte Carlo approximations by sampling from qν(θ).
It is common to assume independence among the individual dimensions of θ such that qν(θ)
factorizes into a product over the individual dimensions qi(θi) where each factor is governed by
its individual variational parameters νi. This independence assumption is also referred to as the
mean field assumption.
Given a family of approximating distributions, variational inference aims to find a distribution

qν(θ) by optimizing an objective that measures the similarity between the approximation qν(θ)
and the true posterior p(θ |D). The term variational originates from a relation to the calculus
of variations, i.e., by considering a function space view where optimization is performed over
the space of distributions {qν}. However, in practice, variational inference typically employs
standard (continuous) optimization techniques over the space of the variational parameters ν.
There exists a range of optimization criteria for variational inference. The most common

criteria are based on the KL divergence which measures the dissimilarity between two distribu-

– 47 –

3 Bayesian Deep Learning

−2 −1 0 1 2

−1

0

1

θ1

θ 2

p(θ |D)
qν(θ)

(a) reverse KL divergence: DKL(qν(θ) ||p(θ |D))

−2 −1 0 1 2

−1

0

1

θ1

θ 2

p(θ |D)
qν(θ)

(b) forward KL divergence: DKL(p(θ |D) ||qν(θ))

Figure 3.3: Reverse KL divergence vs forward KL divergence. The posterior p(θ |D) is a bimodal distribution
with a slightly larger mode at the bottom left. (a) For the reverse KL divergence, qν(θ) captures
the larger mode due to the mode-seeking behavior. (b) For the forward KL divergence, qν(θ)
captures both modes due to the mass-covering behavior.

tions. Consequently, by minimizing the KL divergence between the posterior p(θ |D) and the
approximation qν(θ), we expect to obtain a good approximation of the posterior within the
selected family of approximating distributions. Note that other divergence measures, most of
which are generalizations of the KL divergence, have been studied in the literature, e.g., [50–52].
Since the KL divergence is not symmetric and, hence, does not fulfill the properties of a dis-

tance functional, we distinguish between the reverse and the forward KL divergence.13 Perhaps
the most common variational inference objective is the reverse KL divergence defined as

DKL(qν(θ) ||p(θ |D)) =
∫
Θ
qν(θ) log qν(θ)

p(θ |D)dθ = Eθ∼qν(θ)

[
log qν(θ)

p(θ |D)

]
. (3.25)

For the forward KL divergence, the roles of the posterior p(θ |D) and the approximation q(θ)
are reversed, i.e.,

DKL(p(θ |D) ||qν(θ)) = Eθ∼p(θ|D)

[
log p(θ |D)

qν(θ)

]
. (3.26)

The reverse and the forward KL divergence result in substantially different approximation be-
haviors when used for variational inference. To see why this holds, it is instructive to consider
necessary conditions for (3.25) and (3.26) to become small. On the one hand, for (3.25) to
be small, qν(θ) must be small whenever p(θ |D) is small. This results in an behavior called
zero-avoiding or mode-seeking, where the approximation q(θ) concentrates around a mode and
avoids putting mass in regions where p(θ |D) is small. On the other hand, for (3.26) to be small,
qν(θ) is not allowed to be small whenever p(θ |D) is large. In this case, the resulting behavior
is called mass-covering, where the approximation qν(θ) tends to put mass in all regions where
the posterior p(θ |D) exhibits a substantial amount of mass.
The two different behaviors are best understood by considering a unimodal approximation

qν(θ) for a multimodal posterior p(θ |D) where the modes are separated by sufficiently large
regions of low density. This is illustrated in Figure 3.3. In this case, the mode-seeking approxi-
mation tends to cover the region around one of the modes and, therefore, potentially misses to

13 We adopt the terminology from [53] for the meaning of the terms forward and reverse.

– 48 –

3.2 Approximate Bayesian Inference

cover substantial mass spread around the remaining modes. The mass-covering behavior, on the
other hand, would distribute its mass across all modes and, therefore, put a substantial amount
of mass in low density regions between the modes. Which one of these two behaviors is desirable
depends on the application at hand. For instance, when the approximation is used to generate
samples from the posterior, the mass-covering approximation runs the risk of generating samples
that are very unlikely under the true posterior p(θ |D).

However, regardless of the desirable properties of the approximation qν(θ), the reverse KL
divergence (3.25) is predominantly used in practice due to its computational convenience. For
instance, it can be optimized using samples from qν(θ) (see below). This is typically not pos-
sible for the forward KL divergence (3.26) where the expectation is evaluated with respect to
the intractable posterior p(θ |D) for which generating independent samples is assumed to be
difficult. However, there also exist algorithms that aim to minimize (3.26). For instance, the
expectation propagation algorithm [54] can be seen as approximately minimizing the forward KL
divergence by iteratively minimizing the forward KL divergence of local factors. Interestingly,
when minimizing (3.26) in conjunction with the mean field assumption, it can be shown that
the optimal individual factors qi(θi) correspond to the marginals of the true posterior p(θ |D)
[55].
Traditional methods for optimizing the reverse KL divergence operate in a coordinate-wise

manner. Consider an approximating distribution qν(θ) that adopts the mean field assumption,
i.e., it factorizes into individual factors qi(θi), each of which is governed by individual parameters
νi. It can be shown [55] that for the reverse KL divergence, the optimal factor q∗i (θi) must satisfy

log q∗i (θi) = Eθ−i∼q−i(θ−i) [log p(θ,D)] + const, (3.27)

where the expectation is taken with respect to the distribution specified by the product of the
remaining factors, i.e., q−i(θ−i) = ∏

j 6=i qj(θj). Equation (3.27) admits a closed-form solution if
p(θ,D) and qν(θ) are selected appropriately, e.g., if they satisfy certain conjugacy assumptions
[56, 57]. This suggests an iterative coordinate ascent algorithm where the parameters νi of each
factor qi(θi) are updated in turn. These updates do not increase the KL divergence such that
convergence of the iterative algorithm is guaranteed.
However, these closed-form coordinate ascent updates are model specific and their derivation

is typically cumbersome and error-prone, hindering rapid development of modeling assumptions.
Furthermore, the class of models for which (3.27) admits closed-form solutions is limited. To
obtain a more generally applicable approach, note that it is straightforward to evaluate the
posterior p(θ |D) up to the intractable normalization constant, the evidence p(D). The reverse
KL divergence can be rephrased by separating the intractable evidence p(D) from terms that
only depend on the variational parameters ν. More specifically, by applying Bayes’ rule to the
posterior p(θ |D) in (3.25) and rearranging terms we obtain

DKL(qν(θ) ||p(θ |D)) = −Eθ∼qν(θ) [log p(D|θ)] +DKL(qν(θ) ||p(θ)) + log p(D). (3.28)

When optimizing (3.28) with respect to the variational parameters ν, the intractable term
log p(D) is a constant that can be ignored. Moreover, the KL divergence between the approx-
imation qν(θ) and the prior p(θ) admits a closed-form expression for many commonly used
distributions (e.g., if both are Gaussians). The remaining intractable part is the expected log-
likelihood term. This term, however, can be approximated using samples from qν(θ), allowing
us to perform SGD using Monte Carlo gradients of (3.28). This is interesting since we cannot
approximate (3.28) itself using Monte Carlo methods due to the evidence p(D). This approach is
sometimes also called black box variational inference [58]. These methods require fewer assump-
tions on p(θ,D), enabling variational inference for many different kinds of models. In Section
3.4, we show how to apply this method to perform variational inference for Bayesian DNNs.

Variational inference has been an active research area for the past twenty years and we refer

– 49 –

3 Bayesian Deep Learning

to [59] for a comprehensive overview. Besides applying variational inference to different kinds
of probabilistic models and investigating the optimization of new divergence measures, much
work has been devoted to more expressive approximating distributions qν(θ) that do not rely
on the mean field assumption. For instance, normalizing flows [60, 61] transform a simple
distribution, such as a Gaussian with zero mean and unit variance, by a sequence of invertible
transformations to obtain a more complicated distribution. The variational parameters ν of
the normalizing flow correspond to the learnable parameters of the invertible transformations.
Normalizing flows have the advantage that in the limit of an infinitely long sequence of invertible
transformations they are able to model arbitrary distributions [60], reducing the systematic bias
of variational inference due to an inexpressive approximation qν(θ).
Note that instead of viewing variational inference in terms of minimizing a KL divergence,

one can also view variational inference as the maximization of a lower bound. In particular, by
applying the non-negativity of the KL divergence to the left hand side of (3.28), we obtain the
evidence lower bound

log p(D) ≥ Eθ∼qν(θ) [log p(D|θ)]−DKL(qν(θ) ||p(θ)). (3.29)

The right hand side of (3.29) is often maximized as a surrogate for the intractable marginal
log-likelihood (or evidence), e.g., for the training of variational autoencoders [62].

Example: ML Estimation as Variational Inference

Interestingly, ML estimation as discussed in Section 3.2.1 also arises by minimizing a partic-
ular kind of KL divergence. Consider the KL divergence between the data joint distribution
pdata(x,y) and the model joint distribution p(x,y |θ) governed by parameters θ, i.e.,

DKL(pdata(x,y) ||p(x,y |θ)) =
∫
pdata(x,y) log pdata(x,y)

p(x,y |θ) dxdy

= −H [pdata(x,y)]− E(x,y)∼pdata [log p(x,y |θ)] , (3.30)

where H denotes the (differential) entropy of a distribution. The entropy term is constant with
respect to the parameters θ and can be ignored for minimization. Note that the expected log-
likelihood cannot be computed since the true data generating distribution pdata is assumed to
be unknown, but it can be approximated by a Monte Carlo sum using the observed dataset D
as

E(x,y)∼pdata [log p(x,y |θ)] ≈ 1
N

(
N∑
n=1

log p(yn |xn,θ) + log p(xn |θ)
)
. (3.31)

Assuming that we do not model the input distribution p(xn |θ), we recover the MAP objective
from (3.15) with an assumed uniform prior p(θ), which in turn corresponds to the ML objective.
This connection between ML estimation and KL divergence minimization is interesting since the
properties of the particular kind of KL divergence minimization (forward or backward) directly
transfer to the ML framework. In particular, (3.30) results in a mass-covering behavior. Note
that the reversed KL divergence for this example cannot be easily minimized since the required
density of the true data generating distribution pdata is assumed to be unknown.

3.2.4 Sampling Methods

Besides variational inference, the second pillar of approximate Bayesian inference are sampling
methods. These methods approach the problem in a completely different way. Assume that we

– 50 –

3.2 Approximate Bayesian Inference

want to approximate an intractable distribution p(z).14 Whereas variational inference approx-
imates p(z) by a simpler distribution q(z) using optimization, the aim of sampling methods is
to simulate artificial instantiations z, called samples, from p(z). The resulting samples are then
expected to be drawn from regions where p(z) exhibits substantial mass. In the limit of infinitely
many samples, the proportion of samples falling into a particular region becomes equal to the
probability that p(z) assigns to that region.

It is convenient to think of the collection of the drawn samples z1, . . . , zM as a mixture q(z)
of equally probable delta distributions that approximates the intractable distribution p(z), i.e.,

p(z) ≈ q(z) = 1
M

M∑
i=1

δzi(z). (3.32)

This allows us to approximate intractable expectations with respect to the original distribution
by averaging over these samples, i.e.,

Ez∼p(z) [f(z)] ≈ 1
M

M∑
i=1

f(zi). (3.33)

Given that the samples zi are independent, the variance of the approximated expectation (3.33)
decreases linearly with the number of samples M . Importantly, this holds irrespective of the
number of dimensions of z. However, generating independent samples tends to be difficult if
exact Bayesian inference is intractable.
Note that generating independent samples from many common distributions is tractable, e.g.,

the uniform, Gaussian, exponential, beta, gamma, or the Gumbel distribution. Many sampling
methods for these distributions operate by transforming a sample from a different distribution
for which a sampling algorithm is already available. For instance, if the inverse cumulative
distribution function (cdf) Φ−1

p of a distribution p(z) is available in closed form, we can generate
samples by evaluating Φ−1

p (ε) for samples ε ∼ U([0, 1]) from a uniform distribution.
We will omit details about sampling from these common distributions and start our discussion

with the general Markov chain Monte Carlo (MCMC) algorithm that is widely used in the
literature. Then we proceed with two special instances of the MCMC algorithm that are relevant
for the remainder of this thesis, namely Gibbs sampling and Hamiltonian Monte Carlo (HMC).
These two algorithms are located on opposing extremes of the MCMC spectrum in the sense that
Gibbs sampling only updates one variable at a time, whereas HMC updates many (if not all)
variables simultaneously. We note that there exist stochastic sampling methods that, similarly
to SGD, rely only on a subset of the data to generate samples. These methods are discussed in
the context of DNNs in Section 3.5.

Markov Chain Monte Carlo

A Markov chain is a stochastic process defined as a sequence of random variables {zt}t≥1 where
the concrete instantiations zt only depend on their immediate predecessors zt−1 according to a
transition probability p(zt |zt−1). Under mild assumptions, a Markov chain possesses a unique
stationary distribution p(z) such that by simulating the Markov chain for long enough—i.e., by
iterated sampling from p(zt |zt−1)—the samples zt will eventually be distributed according to
p(z) as t→∞.15 Most importantly, this holds irrespective of the initial value z1. Consequently,
given an appropriately constructed Markov chain whose stationary distribution corresponds to
p(z), we can generate samples by performing a random walk and reporting zt after a sufficiently
large number of steps t. MCMC is a class of sampling algorithms that follow exactly this idea.
14 The distribution p(z) is an arbitrary distribution and therefore may also represent a posterior distribution
p(θ |D). We use p(z) in this section to keep notation uncluttered.

15 The process of simulating the Markov chain is also called a random walk.

– 51 –

3 Bayesian Deep Learning

The question remains how to construct a Markov chain whose unique stationary distribution
corresponds to p(z). A stationary distribution p(z) is characterized by the property that it re-
mains invariant when applying a random step according to the transition probability p(zt |zt−1),
i.e.,

p(zt) =
∑
zt−1

p(zt−1)p(zt |zt−1). (3.34)

Since p(z) is fixed, we need to select transition probabilities p(zt |zt−1) such that p(z) is a
stationary distribution. A sufficient condition satisfying the stationarity property is the detailed
balance condition defined by

p(zt−1)p(zt |zt−1) = p(zt)p(zt−1 |zt). (3.35)

It is straightforward to show that the detailed balance condition implies stationarity according
to (3.34), i.e.,∑

zt−1

p(zt−1)p(zt |zt−1) = p(zt)
∑
zt−1

p(zt−1 |zt) = p(zt). (3.36)

It remains to show that after simulating the Markov chain for long enough, the observed samples
will be distributed according to the stationary distribution regardless of the initial value z1, i.e.,

p(zt |z1) t→∞−−−→ p(z). (3.37)

Fortunately, this holds under relatively mild assumptions [63]. Most notably, the Markov chain
must be irreducible such that, intuitively speaking, each state is reachable with positive prob-
ability from every other state within a finite number of steps. Furthermore, the Markov chain
must be time-homogeneous such that the transition probabilities p(zt |zt−1) do not depend on
the time t, i.e., p(zt |zt−1) = p(zt+1|zt) must hold for all t. These results transfer to continuous
space Markov chains, albeit slightly more care needs to be taken in the respective proofs [63].
The Metropolis-Hastings algorithm [64] provides a general scheme to construct a Markov chain

that satisfies the detailed balance condition. Let p̂(zt |zt−1) be an arbitrary proposal distribution
that depends on the state zt−1 and from which we can efficiently draw samples. The idea of
the Metropolis-Hastings algorithm is to generate a sample zt from the proposal distribution
p̂(zt |zt−1) and to accept this sample with an acceptance probability given by

acc(zt, zt−1) = min
{

1, p(zt) p̂(zt−1 |zt)
p(zt−1) p̂(zt |zt−1)

}
. (3.38)

If the sample gets rejected, we set zt = zt−1. It is straightforward to show that this scheme
satisfies the detailed balance condition (3.35), i.e.,

p(zt−1)p(zt |zt−1) = p(zt−1) p̂(zt |zt−1) acc(zt, zt−1) (3.39)

= p(zt−1) p̂(zt |zt−1) min
{

1, p(zt) p̂(zt−1 |zt)
p(zt−1) p̂(zt |zt−1)

}
(3.40)

= min
{
p(zt−1) p̂(zt |zt−1), p(zt) p̂(zt−1 |zt)

}
. (3.41)

Reversing steps (3.39)–(3.41) with the role of zt and zt−1 interchanged yields the desired result.
A remarkable property of the Metropolis-Hastings algorithm is that we only need to know

the distribution p(z) up to a normalizing constant. This property can be easily seen from (3.38)
as the potentially unknown normalization constant of p(z) would simply cancel. In practice, we
often encounter distributions that are only available up to a normalizing constant. For instance,

– 52 –

3.2 Approximate Bayesian Inference

it is easy to evaluate an expression that is proportional to the posterior distribution (3.3), but
computing the normalization constant itself is typically intractable.

This already gives us a powerful tool to perform approximate posterior inference. However, the
efficiency of the algorithm depends crucially on the particular proposal distribution p̂(zt |zt−1).
A good proposal distribution must satisfy two opposing properties. First, it must be exploratory
in the sense that consecutive samples in our Markov chain are decorrelated as much as possible.
Recall that samples are required to be drawn independently in order to obtain a linear reduc-
tion of the variance of a Monte Carlo estimator. Second, it should induce a high acceptance
probability. In practice, one typically has to make a trade-off by proposing samples zt that are
somewhat close to the previous samples zt−1 to achieve reasonable acceptance rates. If samples
are highly correlated, it is sometimes convenient to subsample the sequence of generated samples
to reduce their correlation by only collecting samples after every few steps. However, this is not
necessary from a theoretical viewpoint and the computational cost for computing intermediate
steps persists.
Another practical consideration is the choice of the initial value z1. MCMC convergences to

the stationary distribution for arbitrary initial values z1 and it is common to select it at random.
In this case z1 is often not representative of p(z). Therefore, a burn-in phase is required where
the first few samples of the Markov chain are discarded. However, determining how long the
burn-in phase should last and when the stationary distribution is reached are questions that are
difficult to answer in practice.
In the following, we discuss two particular sampling algorithms, both of which can be seen as

special cases of the Metropolis-Hastings algorithm. The first one, Gibbs sampling, employs a
proposal distribution that only samples one dimension at a time conditioned on all the others.
The second one, HMC, employs the gradient of the log-density of p(z) to update all variables at
a time while being able to maintain low rejection rates.

Gibbs Sampling

Gibbs sampling is a conceptually simple MCMC algorithm that iteratively updates individual
dimensions zi of the state z conditioned on all the remaining dimensions z−i by sampling from
p(zi |z−i). In this process, the algorithm remains valid regardless of the particular order in which
individual dimensions i are selected. In particular, we can cycle over the individual dimensions
in a predefined order or we can select individual dimensions at random in each step.

We start our discussion by showing that Gibbs sampling is a valid MCMC algorithm. To show
that each step leaves the stationary distribution p(z) invariant, assume that z is already drawn
from p(z). After applying a single step to update zi, the marginal p(z−i) remains invariant since
z−i remains unchanged. Since each step updates zi by sampling from p(zi |z−i), and the product
of p(z−i) and p(zi |z−i) equals the joint distribution p(z), we obtain a valid sample from p(z).

To show that the Markov chain also converges to the stationary distribution irrespective of
its initial state, we assume that a dimension i is selected randomly with uniform probability in
each step. Then the Markov chain is obviously time-homogeneous. A sufficient condition for the
second major condition, irreducibility of the Markov chain, is that each conditional distribution
satisfies p(zi |z−i) > 0 for all values of zi. If this condition holds, each state z can be reached from
every other state z′ after cycling once over the individual dimensions. Although this sufficient
condition often holds in practice, one might have to prove explicitly that the constructed Markov
chain is irreducible in the rare case where this condition does not hold.

Interestingly, the Gibbs sampling algorithm can be seen as a special instance of the Metropolis-
Hastings algorithm discussed above. From the viewpoint of the Metropolis-Hastings algorithm,
the proposal distribution p̂(zt |zt−1) is given by the conditional distribution p(zti |zt−1

−i) where i

– 53 –

3 Bayesian Deep Learning

is the dimension currently being updated. The acceptance probability is then given by

acc(zt, zt−1) = min
{

1,
p(zt)p(zt−1

i |zt−i)
p(zt−1)p(zti |zt−1

−i)

}

= min
{

1,
p(zti |zt−i)p(zt−i)p(zt−1

i |zt−i)
p(zt−1

i |zt−1
−i)p(zt−1

−i)p(zti |zt−1
−i)

}
= 1, (3.42)

where we have used zt−1
−i = zt−i in the last equation.

We have shown that Gibbs sampling can be used to reduce MCMC in a potentially high-
dimensional state space to iterated sampling in a one-dimensional space. Note that the condi-
tional distribution p(zi |z−i) is proportional to the joint distribution p(zi, z−i) if z−i is considered
fixed. Given that the joint distribution p(z) factorizes into a product of several terms, the con-
ditional p(zi |z−i) is fully specified by the factors that depend on zi. For instance, when the joint
distribution p(z) is specified by a BN, it suffices to only consider the Markov blanket of zi. This
is particularly convenient for finite discrete distributions, i.e., one-dimensional distributions are
not subject to the curse of dimensionality and the conditional distribution p(zi |z−i) is obtained
by evaluating the joint distribution p(zi, z−i) for every possible value of zi followed by renormal-
ization. For continuous state spaces, the form of the conditional p(zi |z−i) depends on the joint
distribution p(z). In practice, the joint distribution p(z) is often designed to exhibit certain
conjugacy properties that induce a particular form of the conditional p(zi |z−i) from which we
can easily draw samples. If this is not the case, there still exist efficient algorithms for sam-
pling from continuous one-dimensional distributions that are only known up to a normalizing
constant, such as slice sampling [65].
Due to its simplicity and the fact that it is typically easy to sample from one-dimensional

distributions, Gibbs sampling is widely applicable. However, on the downside, the generated
samples are highly correlated since consecutive samples can only differ in a single dimension and
traversing the state space might take very long. A generalization of Gibbs sampling, called block
Gibbs sampling, partially solves this issue by sampling from a larger subset of dimensions in
each step. For some models it is possible to split the dimensions into subsets such that it is easy
to sample from the joint distribution of each subset conditioned on all the other dimensions.
For instance, the states of a restricted Boltzmann machine can be partitioned into visible and
hidden states, and conditionally sampling each subset jointly given the other is easy [66]. In
Chapter 6, we introduce a block Gibbs sampling algorithm where we split the state space into
discrete and continuous states. The discrete dimensions of the posterior are then sampled using
one-dimensional Gibbs sampling and the continuous dimensions are sampled jointly using HMC.
Another means of reducing the correlation among consecutive samples is provided by collapsed

Gibbs sampling. The idea of collapsed Gibbs sampling is to reduce the dimensionality of the
state space by analytically integrating out certain dimensions. Performing Gibbs sampling on
the remaining dimensions then makes faster progress through the state space. This idea has, for
instance, been successfully applied to the latent Dirichlet allocation model [67] in [68]. Collapsing
certain dimensions of the state space (i.e., the mixture probabilities π) is an integral part of our
proposed Gibbs sampling scheme in Chapter 6.
To conclude our discussion about Gibbs sampling, we want to highlight the similarity between

Gibbs sampling and the coordinate ascent variational inference algorithm based on (3.27). The
major differences between both algorithms are that Gibbs sampling maintains concrete instan-
tiations and updates the values by sampling, whereas coordinate ascent variational inference
maintains distributions and updates the distribution parameters by evaluating expectations.

Sampling with Gradient Information: Hamiltonian Monte Carlo

The HMC algorithm [55, 69, 70] is a sampling algorithm for continuous distributions. It utilizes
the gradient of the log-density to make larger steps which reduces the correlation between

– 54 –

3.2 Approximate Bayesian Inference

consecutive samples and enables a fast exploration of the state space. The idea of using gradients
bears resemblance to continuous optimization techniques such as gradient descent that typically
outperform methods that only have access to the function itself (see Section 2.1.2).

HMC belongs to a class of algorithms called auxiliary variable MCMC. The idea of auxiliary
variable methods is to augment the state space by auxiliary variables u and to sample from the
joint distribution p(z,u) in the augmented space. The joint distribution p(z,u) must satisfy
the property that its marginal p(z) corresponds to the original distribution we want to generate
samples from. Then, by simply discarding the auxiliary variables u from the generated samples
(z,u), we obtain valid samples z from the distribution p(z) that we care about. Note that this
is contrary to previously discussed methods, such as collapsed Gibbs sampling, that reduce the
number of dimensions to increase efficiency. However, as we will see, properties that hold in the
augmented space can be exploited to obtain a sampling scheme with desirable properties that
let us explore the original state space more efficiently. Some other popular auxiliary variable
sampling algorithms are slice sampling [65] and the Swendsen-Wang algorithm [71].
In the context of HMC, it is common to write the distribution p(z) as

p(z) = 1
ZE

exp (−E(z)) , (3.43)

where ZE is a normalization constant ensuring that p(z) integrates to one and E(z) is the
unnormalized negative log-density of p(z). Here, the term E(z) is also called the potential
energy. Assuming z ∈ RD, we introduce the auxiliary variables u ∈ RD called momentum
variables. We can then define the kinetic energy as

K(u) = u>u/2. (3.44)

Finally, we define the Hamiltonian function H(z,u) as the sum of the potential and the kinetic
energy, i.e.,

H(z,u) = E(z) +K(u), (3.45)

to obtain the joint density

p(z,u) = 1
ZH

exp (−H(z,u)) . (3.46)

For the joint distribution (3.46), the variables z and u are independent such that, as required
by auxiliary variable methods, the marginal p(z) corresponds to the distribution we care about.
Furthermore, from (3.44) we can see that p(u) is given by an isotropic Gaussian with zero mean
and unit variance.
The HMC algorithm alternates between two sampling steps which together form a Markov

chain whose stationary distribution corresponds to (3.46). In the first step, we perform a block
Gibbs update for the momentum variables u. Since z and u are independent, sampling from
the conditional p(u |z) is equivalent to sampling from the Gaussian marginal p(u).

In the second step, the joint state (z,u) is updated according to a Metropolis-Hastings step.
In particular, we perform a finite-time simulation of Hamiltonian dynamics according to the
Hamiltonian equations

dzi
dt

= ∂H

∂ui
and dui

dt
= −∂H

∂zi
. (3.47)

It can be shown that the Hamiltonian H(z,u) remains constant when simulating the joint
state according to (3.47). Therefore, this simulation will always be accepted according to the
Metropolis-Hastings acceptance probability. For all but very simple distributions, however,

– 55 –

3 Bayesian Deep Learning

Algorithm 5 Hamiltonian Monte Carlo (HMC)
1: Input: E(z) := − log p(z) + const, z0, T , η
2: for t = 1 to . . . do
3: Draw u ∼ N (0, I)
4: z̄0 ← zt−1

5: ū0 ← u− (η/2)∇zE(z̄0)
6: for k = 1 to T do
7: z̄k ← z̄k−1 + η ūk−1

8: ūk ← ūk−1 − η∇zE(z̄k)
9: end for

10: ūT ← ūT + (η/2)∇zE(z̄T) # correct for last half step
11: Draw ε ∼ U([0, 1])
12: if ε < min{1, exp(E(zt−1) +K(u)− E(z̄T)−K(ūT))} then
13: zt ← z̄T # accept sample
14: else
15: zt ← zt−1 # reject sample
16: end if
17: end for

we are unable to simulate (3.47) analytically, and we must resort to numerical approximations.
Such approximations will necessarily introduce numerical errors and the value of the Hamiltonian
H(z,u) might change. For the HMC algorithm, it is common to apply the leapfrog algorithm
to perform the numerical simulation of (3.47). The leapfrog algorithm simulates (3.47) by
iteratively computing

u(t+ η/2) = u(t)− (η/2)∇zE(z(t)) (3.48)
z(t+ η) = z(t) + ηu(t+ η/2) (3.49)
u(t+ η) = u(t+ η/2)− (η/2)∇zE(z(t+ η)) (3.50)

for a fixed number of iterations T > 0, where η > 0 is a fixed step size. The leapfrog algorithm
is more accurate than a simple time discretization and satisfies important properties to show the
correctness of HMC, namely the preservation of volume in the joint space (z,u) and the property
that the leapfrog iteration is time reversible. The leapfrog algorithm in combination with a
Metropolis-Hastings acceptance step to account for numerical errors ensures that the algorithm
asymptotically samples from the correct distribution. Note that resampling the momentum
variables u in the first step is an integral part of the algorithm as otherwise the algorithm would
only explore points of equal H(z,u).
The complete HMC algorithm is shown in Algorithm 5. The first step of HMC, resampling the

momentum u, happens in line 3. The leapfrog algorithm is performed in lines 5–10. The shown
implementation utilizes the fact that by applying (3.48)–(3.50) in succession, the half steps
(3.48) and (3.50) can be combined to full steps and half steps remain only once at the beginning
and once at the end. The Metropolis-Hastings acceptance step to account for numerical errors
is performed in lines 11–16.
It is intuitive to think of the algorithm as simulating a ball that moves on a surface defined

by E(z) where the ball’s velocity u changes according to the laws of motion. For instance, when
the ball is moving downwards, its kinetic energy K(u) increases while its potential energy E(z)
decreases such that both energies maintain balance at all times. Hence, the HMC algorithm
repeatedly pushes the ball into a random direction u (the first step) and reports the position
z of the ball after simulating the laws of motion for a finite time. This scheme allows us to
make substantially larger steps than most other MCMC methods based on simpler proposal

– 56 –

3.3 Bayesian Deep Neural Networks

distributions, mitigating random walk behavior and resulting in weaker correlation between
consecutive samples.

In practice, the efficiency of the algorithm depends crucially on the choice of the two leapfrog
parameters η and T . Ideally, the leapfrog algorithm satisfies three competing objectives, i.e., (i)
small numerical errors to maintain high Metropolis-Hastings acceptance rates, (ii) large progress
in the state space to obtain weakly correlated samples, and (iii) little computation time. To see
why this is challenging, we need to consider the effect of setting η and T in particular ways.
For small η, we can ensure small numerical errors, but the progress through the state space
might be insufficiently small. For small T , we obtain a fast algorithm (the number of iterations
directly relates to the computation time) and achieve small numerical errors, but exploration of
the state space might again make insufficient progress. Some algorithms have been proposed to
automate the selection of η and T , e.g., adaptive Hamiltonian Monte Carlo (AHMC) [72] or the
No-U-Turn sampler [73]. In Chapter 6, we employ AHMC to sample from the continuous space
of DNN weights.
Many distributions encountered in practice correspond to posterior distributions whose log-

density is given by a sum over the whole dataset D. As discussed in the context of stochastic
optimization (see Section 2.1.2), this becomes difficult for very large datasets. In Section 3.5, we
discuss how sampling methods can be generalized to the stochastic gradient framework similarly
to how gradient descent has been generalized to SGD.

3.3 Bayesian Deep Neural Networks
In Chapter 2, we have discussed how to compute a point estimate of the DNN weights W
by means of optimization (see Figure 3.4(a)). Subsequently, predictions are computed solely
based on these weights. Here, we consider distributions over the weights (see Figure 3.4(b)). In
particular, the aim of Bayesian DNNs is to infer the posterior distribution over the weights W
using Bayesian inference, i.e.,

p(W |D) = p(D|W)p(W)
p(D) ∝ p(D|W)p(W). (3.51)

Subsequently, predictions are computed by considering the whole weight space using expectations
with respect to this posterior, i.e.,

p(y |x,D) = EW∼p(W|D)[p(y |x,W)] =
∫
p(y |x,W)p(W |D)dW. (3.52)

Using this procedure, DNNs inherit all the favorable properties of Bayesian inference such as
less overfitting and the ability to compute meaningful prediction uncertainties. The Bayesian
framework requires us to select a prior distribution p(W) and a likelihood function p(D|W). We
employ the likelihood functions discussed in Section 3.2.1. In particular, we assume Gaussian
outputs (3.16) for regression, and Bernoulli (3.18) and categorical outputs (3.20) for binary and
multiclass classification, respectively.
For the prior p(W), there are several reasonable options in the context of DNNs. Without

specific knowledge about the weights W, the prior p(W) is typically selected to be an isotropic
Gaussian with zero mean and variance γ2. Using this prior, the MAP objective becomes equiv-
alent to a regularized loss (2.9) where R(W) corresponds to an `2-norm regularizer. Another
common choice is a Laplace prior, for which the MAP objective recovers an `1-norm regular-
izer. The `1-norm regularizer is known to enforce sparsity and is frequently used in the pruning
literature (see Section 4.2). Blundell et al. [74] employ a scale mixture prior using two zero-
mean Gaussians with different variances γ2

1 and γ2
2 . This enforces a portion of the weights to

concentrate around zero while also allowing some of the weights to have larger magnitudes.

– 57 –

3 Bayesian Deep Learning

x1 x2

Σ Σ Σ

y

1.31.3 −0.2−0.2 1.21.2 −0.6−0.6 0.10.1 0.70.7

1.11.1 −0.7−0.7 0.90.9

(a) deterministic weights

x1 x2

Σ Σ Σ

y

(b) weight distributions

x1

x2

xdl−1

∑

(c) probabilistic forward pass

Figure 3.4: (a) Conventional DNN with deterministic weights. (b) Bayesian DNN using the mean field ap-
proximation. Each connection is associated with a weight distribution instead of a deterministic
weight. (c) The probabilistic forward pass operates in two steps. In the first step, the activation
distribution is approximated by a Gaussian using the central limit theorem. In the second step,
the Gaussian approximation is passed through the nonlinear activation function.

A more elaborate prior is based on general Gaussian mixture models (GMMs) [75] where
the mass is spread around the means of several Gaussian components. By performing MAP
inference using a GMM prior, the weights tend to cluster around the component means. This
results in a soft weight sharing where many of the weights are similar but not equal. However, it
is not straightforward to set the component means in a meaningful way. Therefore, the authors
of [75] propose to adapt the prior p(W) during training.

An interesting perspective on Bayesian DNNs emerges if we attribute structural constraints
on the architecture to specific choices of priors p(W). For instance, a convolutional layer in
a CNN can be seen as a fully connected layer where an infinitely strong prior p(W) enforces
a particular sparsity and weight sharing pattern on W. Other common examples of imposing
structural restrictions on the weights are RNNs, autoencoders [22] (decoder weight matrices are
transposed versions of the encoder weight matrices), and random weight sharing [76].

Bayesian inference for DNNs is extremely challenging. Considering the difficulty of finding a
mode of the posterior p(W |D), it is unsurprising that exact computation of (3.52) is intractable
for DNNs of any reasonable size. The posterior inherits all the unfavorable computational
properties of DNNs, i.e., it is highly nonlinear and multimodal. Furthermore, the number of
weights is typically on the order of thousands or even millions, preventing the use of general
purpose numeric integration methods. Even approximating (3.52) by replacing the true posterior
with a more convenient distribution q(W) is intractable due to the nonlinearities of p(y |x,W).

In the remainder of this section, we focus on approximating expected predictions (3.52). For
this purpose, we assume that we are given a suitable approximation q(W) of the posterior (3.51)
that has already been computed in a previous step. We defer the discussion on how to actually
obtain an approximation q(W) to Section 3.4 since the presented methods to approximate (3.51)
and (3.52) rely on the same concepts. Provided that we can efficiently generate independent
samples from q(W), the most straightforward approximation of (3.52) is to compute a Monte
Carlo average as

EW∼q(W)[p(y |x,W)] ≈ 1
M

M∑
i=1

p(y |x,Wi) with Wi ∼ q(W). (3.53)

In the remainder, we derive closed-form approximations of (3.52).

– 58 –

3.3 Bayesian Deep Neural Networks

3.3.1 Linearization of the Network Output

In the following, we assume a Gaussian approximation q(W) = N (W |µW ,ΣW). Possible ways
to obtain a Gaussian approximation are Laplace’s method (see Section 3.2.2) or variational
inference (see Section 3.2.3 and Section 3.4).
Using the Gaussian approximation q(W), it is possible to obtain a closed-form approximation

based on a linearization of the DNN output activations aL. Assume that the variance of q(W)
is small such that the output activations aLW(x) behave linearly in W in the region where q(W)
exhibits significant mass, i.e., in the vicinity of µW . This assumption justifies a first-order Taylor
expansion of aLW(x) around µW to approximate the DNN output as

aLW(x) ≈ aLµW (x) + g(x)>(W− µW), (3.54)

where we have defined the Jacobian

g(x) = ∇W aLW(x)
∣∣∣
W=µW

. (3.55)

Using W ∼ N (µW ,ΣW), we substitute W = µW + Σ
1
2
W Z for Z ∼ N (0, I) into the right hand

side of (3.54) to obtain

aLW(x) ≈ aLµW (x) + g(x)>Σ
1
2
W Z, (3.56)

which we recognize as following the Gaussian distribution

p(aL |x,D) ≈ N
(
aL
∣∣∣aLµW (x),g(x)>ΣW g(x)

)
. (3.57)

For regression, we assume that the outputs y are normally distributed according to

p(y |aL) = N
(
y
∣∣∣aL, Iβ2

)
, (3.58)

which results in the approximate output distribution

p(y |x,D) ≈
∫
p(aL |x,D)p(y |aL)daL = N

(
y
∣∣∣aLµW (x),g(x)>ΣW g(x) + Iβ2

)
. (3.59)

This approximation has, for instance, been used in [77]. For binary classification using a single
output aL, the outputs y ∈ {0, 1} are distributed according to

p(Y = 1 |aL) = sigm(aL). (3.60)

For the logistic sigmoid, the marginalization over aL does not admit an analytic solution. How-
ever, by approximating the logistic sigmoid by the cdf of a standard normal distribution, Φ(aL),
we obtain the closed-form approximation (B.27) as

p(Y = 1 |x,D) =
∫

sigm(aL)N (aL |µaL , σ2
aL)daL ≈ sigm

 µaL√
1 + c̃2σ2

aL

 , (3.61)

for c̃ =
√
π/8, and µaL and σ2

aL
being the mean and the variance of the Gaussian approximation

in (3.57), respectively. The multiclass case is more challenging. We refer to [78] and [79] for
discussions on approximations for the multiclass case.

– 59 –

3 Bayesian Deep Learning

3.3.2 The Probabilistic Forward Pass

The previous approximation can be considered as a global approximation scheme in the sense
that the linearization (3.54) takes into account how individual weights influence the DNN output
activations aL. A local approximation scheme is obtained by considering how individual weights
influence the activations of their layer. This is achieved by successively performing Gaussian
approximations of the activation distributions p(al) of the individual layers (see Figure 3.4(c)).
This method, which we call probabilistic forward pass, is an integral part of a paper we have
published at the Workshop on Bayesian Deep Learning at the NIPS conference in 2016 [80].
Throughout our discussion, we assume a factorized distribution q(W) and that the weights

Wl are independent from the layer inputs xl−1. We emphasize that the probabilistic forward
pass is not constrained to particular forms of q(W). The only requirement on q(W) is that its
mean E[W] and variance V[W] can be evaluated efficiently. Indeed, we will utilize this freedom
in Chapter 5 to approximate expected predictions for discrete distributions q(W).

Let W = (W1, . . . ,WL) be the set of weight matrices of all layers. We want to approximate
the expected prediction (3.52) by replacing the true posterior p(W |D) by the approximation
q(W), i.e.,

EW∼p(W|D)[p(y |x0,W)] ≈
∫
q(W)p(y |x0,W)dW. (3.62)

Approximate al: The first step of the probabilistic forward pass approximates the distribu-
tion over activations al. Assume we are given a distribution q(xl−1) over the inputs from the
previous layer. Since the activations are computed as a sum of typically many random variables,
we can invoke the central limit theorem and approximate the activation distribution as

q(al |xl−1,Wl) = N (aL |µal ,Σal), (3.63)

where

µali
=
∑
k

E[wli,k]E[xl−1
k] (3.64)

and

cov(ali, alj) =
∑
k

∑
k′

E[wli,k]E[wlj,k′]cov(xl−1
k , xl−1

k′) + I[i = j]
∑
k

V[wli,k]E[(xl−1
k)2]. (3.65)

We refer to Appendix B.1 for a detailed derivation of (3.65). To reduce the computational
overhead, we only compute cov(ali, alj) for i = j, i.e., we approximate Σal by its diagonal as
Σal ≈ diag(σ2

al
) where σ2

ali
= V[ali]. For element-wise activation functions hl(al), this implies

cov(xlk, xlk′) = 0 for k 6= k′ for the inputs of the subsequent layer. By assuming deterministic
inputs x0, this further implies cov(xlk, xlk′) = 0 for k 6= k′ for all layers l. Therefore, the diagonal
entries cov(ali, ali) of Σal , simplify to

σ2
ali

=
∑
k

E[wli,k]2V[xl−1
k] + V[wli,k]E[(xl−1

k)2] (3.66)

=
∑
k

E[wli,k]2V[xl−1
k] + V[wli,k]E[xl−1

k]2 + V[wli,k]V[xl−1
k]. (3.67)

Note that for the first layer l = 1, the values x0 are deterministic, simplifying expressions to

µa1
i

=
∑
k

E[w1
i,k]x0

k and σ2
a1
i

=
∑
k

V[w1
i,k](x0

k)2. (3.68)

– 60 –

3.3 Bayesian Deep Neural Networks

Indeed, the diagonal approximation is exact for the first layer, which can be easily seen by
noting that cov(xl−1

k , xl−1
k′) = 0 in (3.65). It is intuitive to think of the Gaussian approximation

as pushing the uncertainty over the weights Wl to the subsequent activations al. This allows
us to approximate the integral (3.62) as

EW∼p(W|D)[p(y |x0,W)] ≈
∫
q(W>l)N

(
al |µal ,diag(σ2

al)
)
p(y |al,W>l)daldW>l, (3.69)

where we have defined W>l = (Wl+1, . . . ,WL).

Approximate xl: In the next step, the Gaussian distribution of the activations al is passed
through the nonlinear activation function hl to obtain a distribution over the inputs xl of the
next layer. Depending on the activation function hl, we compute the means and the variances

E[xli] = Eali∼N (µ
al
i
,σ2
al
i

)[hl(ali)] and V[xli] = Vali∼N (µ
al
i
,σ2
al
i

)[hl(ali)] (3.70)

either in closed form or we approximate them if the activation function hl does not permit a
closed-form solution. This further approximates (3.69) as

EW∼p(W|D)[p(y |x0,W)] ≈
∫
q(W>l)q(xl)p(y |xl,W>l)dxldW>l. (3.71)

Next, we show how to compute the mean E[xli] and the raw second moment E[(xli)2] for commonly
used activation functions hl. The variance follows from V[xli] = E[(xli)2]− E[xli]2.

ReLU: For the ReLU function max(a, 0), we obtain the expectation

E
[
xli

]
=
µali
2

1 + erf

 µali√
2σ2

ali

+

√√√√σ2
ali

2π exp

− µ2
ali

2σ2
ali

 (3.72)

and the raw second moment

E
[
(xli)2

]
=
σ2
ali

+ µ2
ali

2

1 + erf

 µali√
2σ2

ali

+ µali

√√√√σ2
ali

2π exp

− µ2
ali

2σ2
ali

 , (3.73)

where erf denotes the error function defined as

erf(u) = 2√
π

∫ u

0
exp(−z2)dz. (3.74)

The integral in the definition of the error function (3.74) does not allow for an analytic solution,
but efficient implementations thereof exist in any reasonable package for numeric computations.

sigm and tanh: For the logistic sigmoid and the hyperbolic tangent, the required first and
second moments cannot be computed in closed form. However, by approximating the logistic
sigmoid by the cdf of a standard normal distribution, Φ(a), we can approximate the required
first and second moments (see Appendices B.5 and B.6) by

E
[
xli

]
= sigm

 µali√
1 + c̃2σ2

ali

 and E
[
(xli)2

]
= sigm

 α̃(µali − b̃)√
1 + α̃2c̃2σ2

ali

 (3.75)

– 61 –

3 Bayesian Deep Learning

for α̃ = 4 − 2
√

2, b̃ = − log(
√

2 − 1), and c̃ =
√
π/8. By noting that tanh(a) = 2 sigm(2a) − 1,

we obtain a similar approximation for the hyperbolic tangent (see Appendix B.7).

sign: An interesting case is obtained for the sign activation function, for which we obtain a
binary output distribution over {−1, 1}. Using a standard normal random variable Z ∼ N (0, 1),
the corresponding output distribution is given by

q(X l
i = 1) = q(Ali > 0) = p(σaliZ + µali

> 0) = p(Z > −µali/σali) = Φ(µali/σali). (3.76)

The corresponding mean and respective raw second moment are given by

E[xli] = 2Φ
(
µali

/σali

)
− 1 and E[(xli)2] = 1. (3.77)

Most importantly, the mean E[xli] and the variance V[xli] of this binary distribution are differen-
tiable in the mean µali and the variance σ2

ali
of the Gaussian activation distribution. We utilize

this in Chapter 5 where we train DNNs using the sign activation function.

The two steps discussed so far—approximating the distribution over activations by a Gaussian
and propagating this Gaussian through the nonlinear activation function—are iterated for all
layers up to the output layer to obtain a Gaussian approximation over the activations aL, i.e.,

EW∼p(W|D)[p(y |x0,W)] ≈
∫
N
(
aL |µaL ,diag(σ2

aL)
)
p(y |aL)daL. (3.78)

The form of the integral in (3.78) is similar to the integral of the linearization approximation
(3.59). For regression, we obtain the approximate output distribution

p(y |x,D) = EW∼p(W|D)[p(y |x0,W)] ≈ N
(
y
∣∣∣µaL , diag(σ2

aL) + Iβ2
)
. (3.79)

For binary classification, we can apply the approximation in (3.61). For a discussion of the
multiclass case, we again refer to [78] and [79].
The idea of approximating a sum over several random variables by a Gaussian using the

central limit theorem has been used in different contexts before. Teh et al. [81] treat certain
count variables as sums over several independent Bernoulli variables and approximate them
by Gaussians. This approximation dramatically improves the computational efficiency of their
collapsed variational inference algorithm for the latent Dirichlet allocation model. More closely
related to our current discussion, Ribeiro and Opper [82] approximate sums over several random
variables as they arise in single layer neural network models (e.g., linear or logistic regression)
to obtain a tractable expectation propagation [54] algorithm. Several works have extended this
technique to DNNs by performing successive Gaussian approximations of the activation distri-
bution p(al). Wang and Manning [31] transfer the stochasticity of dropout noise to subsequent
layers to obtain a closed-form approximation of the induced dropout objective. They showed
that this reduces the training time dramatically due to the reduced gradient variance while still
enjoying the regularizing effect of dropout. Soudry et al. [83] apply the Gaussian approximation
to obtain closed-form expectation propagation style updates for discrete and continuous weight
distributions of DNNs with sign activations. However, for continuous weight distributions, their
method assumes a Gaussian distribution with fixed variance. Hernández-Lobato and Adams [84]
propose a similar method inspired by expectation propagation to allow for continuous Gaussian
weight distributions with learnable variance parameters. Moreover, they also approximate the
posterior over the hyperparameters, i.e., the prior variances of both the weights and the DNN
outputs for regression.
The probabilistic forward pass has been extended in [85] to the non-diagonal case by also

modeling correlations between activations al. They propose approximations to the required

– 62 –

3.4 Bayesian Neural Networks Using Variational Inference

quantities when correlated Gaussians are propagated through the commonly used ReLU and
Heaviside step activation functions. In Section 3.4.4, we will see that, conceptually, the proba-
bilistic forward pass is closely related to the local reparameterization trick [33] which propagates
samples from the activation distributions q(al) through the DNN.
We note that using the probabilistic forward pass for convolutional layers, recurrent archi-

tectures, or any other architecture that employs some kind of weight sharing, introduces an
independence assumption. Convolutions use the same weights to compute activations at differ-
ent spatial locations, and recurrent architectures use the same weights to compute activations
at different time steps. So far, we have implicitly assumed that each individual weight wli,j only
participates in the computation of a single activation ali. For models with shared weights, a
single weight participates in the computation of several activations ali and the corresponding
activation distributions q(al) become dependent if the shared weights are random variables.
Note that we have ignored commonly used building blocks in our discussion of the probabilistic

forward pass. In Chapter 5, we present methods for propagating Gaussian distributions through
batch normalization and max pooling operations.

3.4 Bayesian Neural Networks Using Variational Inference

In the previous section, we have assumed that we are already given an approximation q(W) to
the intractable posterior p(W |D). In this section, we discuss how such an approximation can
actually be obtained. More specifically, we aim to minimize the reverse KL divergence objective
(3.25) where the parameters θ correspond to the weights W of a DNN. For convenience, we
state the reverse KL divergence objective again here, i.e.,

DKL(qν(W) ||p(W |D)) = EW∼qν(W)

[
log qν(W)

p(W |D)

]
. (3.80)

One of the pioneering works concerned with the minimization of (3.80) was conducted by Hinton
and van Camp [86], albeit drawing motivation from a different background. They phrased
the minimization of (3.80) in terms of the information theoretic minimum description length
(MDL) framework [87] which states that one should minimize the number of bits required to
communicate both the model parameters and the discrepancy between model predictions and
target values. For this purpose, we can apply the decomposition (3.28) to obtain

DKL(qν(W) ||p(W |D)) = −EW∼qν(W) [log p(D|W)] +DKL(qν(W) ||p(W)) + log p(D).
(3.81)

The MDL loss is defined as the sum of the first two terms of (3.81). The third term can be
ignored as it does not depend on the variational parameters ν. In the MDL framework, the first
term is interpreted as the amount of information required to encode the targets y for known
inputs x0 using the outputs ŷ of a DNN whose weights W are sampled from qν(W). The second
term is interpreted as the amount of information required to encode weights W sampled from
qν(W) using a coding scheme defined by the prior p(W). In this context, the first term can be
seen as a reconstruction loss, whereas the second term can be seen as a complexity loss [88]. In
[86] it is shown that the MDL loss and its gradient can be computed exactly for a single hidden
layer neural network with nonlinear hidden activation functions and linear output activations.
Their implementation utilized precomputed numerical integrals stored in a lookup table.
However, for DNNs with many layers, optimizing (3.80) is highly non-trivial and requires

approximation techniques. It is worth inspecting (3.81) once again as it separates the intractable
parts from the tractable parts of (3.80) more clearly. The third term of (3.81), the marginal
likelihood or evidence term log p(D), is intractable but irrelevant for optimization. The second

– 63 –

3 Bayesian Deep Learning

term, the KL divergence between the approximation qν(W) and the prior p(W), is tractable
for many common choices of the respective distributions, e.g., if both distributions are from the
same exponential family. We typically also assume factorized distributions qν(W) and p(W)
such that the KL divergence decomposes into a sum over the individual weights. For instance,
the KL divergence between two one-dimensional Gaussians is given by

DKL(N (µ1, σ
2
1) || N (µ2, σ

2
2)) = 1

2

(
log σ

2
2
σ2

1
+ σ2

1 + (µ1 − µ2)2

σ2
2

− 1
)
. (3.82)

The relevant intractable part of (3.81) manifests itself in the first term, the expected negative
log-likelihood. By recognizing that this term is closely related to the expected predictions (3.52)
discussed in Section 3.3, we can readily take advantage of the techniques discussed there.
In the remainder of this section, we discuss two approaches to optimizing (3.80) with a spe-

cial emphasis on the intractable expected log-likelihood. The first approach approximates the
expected log-likelihood using the probabilistic forward pass to obtain a closed-form expression.
The second approach computes Monte Carlo gradients in order to perform SGD. Unlike com-
puting Monte Carlo estimates of the loss function itself, computing Monte Carlo estimates of
its gradient requires more care to maintain compatibility with backpropagation.

3.4.1 A Closed-Form Approximation Using the Probabilistic Forward Pass

The expected predictions (3.52) differ from the expected log-likelihood in (3.81) only in the addi-
tional logarithm. Therefore, we can perform the probabilistic forward pass (see Section 3.3.2) to
obtain a closed-form Gaussian approximation of the output activations aL ∼ N (µaL , diag(σ2

aL
)).

The resulting approximation of the expected log-likelihood is given by

EW∼q(W)[log p(y |x0,W)] ≈ EaL∼N (µ
aL
,diag(σ2

aL
))[log p(y |aL)]. (3.83)

For regression, the right hand side of (3.83) is an expectation of a quadratic form with respect
to a Gaussian which can be computed exactly. Assuming p(y |aL) = N (y |aL, Iβ2), we obtain

EaL∼N (µ
aL
,diag(σ2

aL
))[log p(y |aL)] = −dL2 log 2πβ2 − 1

2β2

dL∑
i=1

[
σ2
aLi

+ (µaLi − yi)
2
]
. (3.84)

We refer to Appendix B.2 for the derivation of an exact expression for general covariance matrices
of the Gaussian distributions p(y |aL) and N (aL |µaL ,ΣaL).
For classification, the expectation on the right hand side of (3.83) does not admit an exact

solution and, once again, we have to resort to approximations. We propose to approximate
log p(y |aL) using a second-order Taylor approximation around µaL as

log p(y |aL) ≈ log p(y |µaL) +
(
aL − µaL

)>
g + 1

2
(
aL − µaL

)>
H
(
aL − µaL

)
(3.85)

with the respective gradient and Hessian matrix

g = ∇aL log p(y |aL)
∣∣∣
aL=µ

aL

and H = ∇2
aL log p(y |aL)

∣∣∣
aL=µ

aL

. (3.86)

Using (B.18), the exact expectation of the second-order approximation (3.85) with respect to a
Gaussian is given by

EaL∼N (µ
aL
,diag(σ2

aL
))[log p(y |aL)] ≈ log p(y |µaL) + 1

2

dL∑
i=1

σ2
aLi
Hi,i. (3.87)

– 64 –

3.4 Bayesian Neural Networks Using Variational Inference

Note that the first-order term involving the gradient g has vanished since the Taylor approxima-
tion was computed around the mean µaL . Furthermore, since we assume a diagonal Gaussian
N (aL |µaL , diag(σ2

aL
)), we only require the diagonal entries of the Hessian H.

It remains to compute the diagonal entries of the Hessian H. For completeness, we also report
the expressions for the gradient g. For binary classification using a single output aL, we have

log p(y |aL) = y log(sigm(aL)) + (1− y) log(1− sigm(aL)). (3.88)

The first and second partial derivatives of (3.88) evaluated at µaL are given by

g = y − sigm(µaL) and H = − sigm(µaL)(1− sigm(µaL)). (3.89)

For multiclass classification with targets y ∈ {1, . . . , C}, we have

log p(y |aL) = log(softmaxy(aL)). (3.90)

The first and second partial derivatives of (3.90) evaluated at µaL are given by

gi = I[y = i]− softmaxi(µaL) and Hi,i = − softmaxi(µaL)(1− softmaxi(µaL)). (3.91)

In practice, the second-order approximation often provides a good approximation to the true
expectation. However, if the variance ΣaL is large such that the Gaussian puts significant mass
in regions where the second-order approximation becomes inaccurate, the approximation quality
might suffer. For alternative approximations we refer to [31] for binary classification and to [79]
for multiclass classification.
From an optimization perspective, the approximated closed-form objective yields several ben-

efits compared to stochastic methods relying on Monte Carlo gradients. Since the gradient of
the loss can be computed in closed form, the optimization procedure does not suffer from a po-
tentially high gradient variance impairing the convergence behavior. It is also easier to select an
appropriate stopping criterion for iterative optimization procedures. Commonly used stopping
criteria are based on the loss function or the gradient magnitude, both of which can be evalu-
ated exactly. Furthermore, the closed-form objective can be optimized using more sophisticated
second-order optimization techniques such as quasi-Newton methods. Second-order methods are
often prone to numerical errors in the stochastic setting and, therefore, are rarely used to train
DNNs. We conclude that especially in the small-data regime where it is feasible to compute
gradients in batch mode using the whole dataset D, the closed-form loss might provide a viable
option. We note that the closed-form loss is still compatible with mini-batch optimization to
inherit the advantages of stochastic optimization.
On the downside, we might also lose some favorable properties when optimizing an approxi-

mated objective. For instance, it is not guaranteed that minimizing the approximation can be
seen as maximizing a lower bound to the evidence as in (3.29).

3.4.2 Optimization Using Monte Carlo Gradients

Although the expected log-likelihood term in (3.81) cannot be computed exactly, it can be
approximated by Monte Carlo integration using samples from the variational approximation
qν(W). This raises the question whether it is possible to generate unbiased Monte Carlo samples
of the gradient of the expected log-likelihood in order to perform SGD. The answer turns out to
be positive, but it is not as straightforward as generating Monte Carlo samples of the expected
log-likelihood itself.

The difficulty is best explained in terms of computation graphs (see Section 2.1.3). We consider

– 65 –

3 Bayesian Deep Learning

a general loss L(W) and a corresponding expected loss

LE(ν) = EW∼qν(W)[L(W)]. (3.92)

Note that the expected log-likelihood term in (3.81) is a special case of (3.92), but we emphasize
that our discussion is rather general and applies more widely. We can construct a computation
graph (see Figure 3.5(a)) that generates a Monte Carlo sample of the loss LE(ν) by introducing
a stochastic operation node that depends on ν and generates a sample W ∼ qν(W). Subse-
quently, the given loss L(W) is evaluated for the sampled weights W. However, when we invoke
backpropagation and arrive at the stochastic operation node, we cannot backpropagate through
this stochastic node to obtain a gradient of ν since the sampling procedure is not a differentiable
operation—in fact, it is not even a function.
Fortunately, there exist several reformulations of the gradient ∇νLE that allow us to generate

Monte Carlo gradients. For instance, in a first attempt to scale the work of Hinton and van Camp
[86] to larger architectures, Graves [89] utilized a special property of Gaussian distributions [90]
that allows us to obtain Monte Carlo gradients by sampling from N (µ,Σ), i.e.,

∇µEW∼N (µ,Σ)[L(W)] = EW∼N (µ,Σ)[∇WL(W)], and (3.93)

∇ΣEW∼N (µ,Σ)[L(W)] = 1
2 EW∼N (µ,Σ)[∇2

WL(W)]. (3.94)

However, computing the gradient with respect to the covariance matrix (3.94) is computation-
ally expensive, even for diagonal covariance matrices Σ, since it requires the computation of
second-order derivatives. Therefore, for large DNNs for which computing the diagonal Hessian
is impractical, an approximation based on the empirical Fisher matrix is proposed [89], resulting
in biased gradient estimates.
In the following sections, we discuss the two most commonly used approaches to obtain unbi-

ased Monte Carlo gradients in more general settings. The first one, called the log-derivative trick,
is applicable for a wide range of distributions but it typically suffers from high variance. The
second one, called the reparameterization trick, is only applicable to continuous differentiable
distributions but its variance is typically much lower. Finally, we present the Gumbel-softmax
approximation which enables us to compute biased gradients for discrete distributions using
the reparameterization trick. We refer the interested reader to [91] for a comprehensive survey
about Monte Carlo gradient estimation.

3.4.3 The Log-Derivative Trick

The log-derivative trick, also known as score function estimator [92], the likelihood ratio method
[93], or the REINFORCE estimator [94], is based on the general property

∇νf(ν) = f(ν)∇ν log f(ν). (3.95)

Using (3.95), we can rewrite the gradient of the expected loss LE(ν) as

∇νEW∼qν(W)[L(W)] =
∫
∇νqν(W)L(W)dW (3.96)

= EW∼qν(W)[L(W)∇ν log qν(W)]. (3.97)

In (3.96) we have assumed that differentiation and integration are interchangeable. This is valid
under relatively mild conditions, e.g., by appealing to Leibniz’s integral rule. Expression (3.97)
follows from (3.95). Assuming that the terms inside the expectation (3.97) can be efficiently

– 66 –

3.4 Bayesian Neural Networks Using Variational Inference

evaluated, we can approximate the gradients by Monte Carlo averaging as

∇νLE(ν) ≈ 1
M

M∑
i=1
L(Wi)∇ν log qν(Wi) with Wi ∼ qν(W). (3.98)

The log-derivative trick provides a general framework to compute stochastic gradients of func-
tions that are defined as expectations. Moreover, the method is widely applicable and can, for
instance, also be used for discrete distributions qν(W).

However, it turns out that the log-derivative trick typically exhibits high variance. The reason
for this is that the direction of the gradient is guided by the uninformative log-density log qν(W)
rather than the loss L(W). A better intuition for this behavior is obtained by considering an
isotropic Gaussian distribution qν(W). By generating samples W ∼ qν(W) to compute the
gradient ∇ log qν(W), the direction of the gradient will effectively be uniformly distributed.
Consequently, on average we cannot even expect this direction to be a descent direction of the
loss function LE(ν). It is only due to the weighting with the loss function L(W) in (3.97) that
causes the stochastic gradients to be equal to the true gradient in expectation.
Besides using more samples to reduce the variance of the gradient estimator, there exist a

variety of variance reduction techniques such as control variates [58, 95] and Rao-Blackwellization
[58, 96]. Since the log-derivative trick is rarely used without such variance reduction techniques,
we briefly review these two techniques here. We note that there exist several other variance
reduction techniques and we refer the reader to [91, 97] for more about the topic.

Control Variates

The control variate method reduces the variance of a Monte Carlo estimator by exploiting
knowledge from a related expectation that can be computed in closed form. More specifically,
assume that the expectation Eu∼p(u)[f(u)] does not admit a closed-form solution but we can
approximate it by sampling u ∼ p(u). Furthermore, let g(u) be some function such that
Eu∼p(u)[g(u)] = c is known. We can then rewrite the expectation as

Eu∼p(u)[f(u)] = Eu∼p(u)[f(u)− α(g(u)− c)] (3.99)

to obtain a different estimator for the expectation of f(u) for any α ∈ R. The variance of the
right hand side of (3.99) is

V[f(u)− α(g(u)− c)] = V[f(u)] + α2V[g(u)]− 2αcov(f(u), g(u)). (3.100)

Consequently, if cov(f(u), g(u)) is large and for a suitable choice of α, the variance of the new
estimator can be reduced. In fact, the optimal α∗, obtained by setting the derivative of (3.100)
with respect to α to zero, is given by

α∗ = cov(f(u), g(u))
V[g(u)] . (3.101)

The optimal α∗ is typically not available in closed form, but it can be approximated using the
empirical covariance and variance using the generated samples of f(u) and g(u).

Rao-Blackwellization

Rao-Blackwellization is a variance reduction technique that reduces the sampling space by con-
ditioning on certain dimensions. Assume that we want to estimate

E(u,ũ)∼p(u,ũ)[f(u, ũ)] = Eu∼p(u)[Eũ∼p(ũ|u)[f(u, ũ)]︸ ︷︷ ︸
f̃(u)

]. (3.102)

– 67 –

3 Bayesian Deep Learning

If f̃(u) can be computed efficiently for any u (either numerically or in closed form), we obtain
an estimator for f(u, ũ) by sampling from the lower-dimensional space of u instead of the joint
space of (u, ũ). Using the law of total variance, we can show that this estimator does not increase
variance, i.e.,

V(u,ũ)∼p(u,ũ)[f(u, ũ)] = E[V[f(u, ũ) |u]]︸ ︷︷ ︸
≥0

+V[E[f(u, ũ) |u]]︸ ︷︷ ︸
V[f̃(u)]

≥ Vu∼p(u)[f̃(u)]. (3.103)

In some cases it suffices to condition on a single dimension to achieve a substantial variance
reduction [96]. In this case, even if the required integral or summation is not available in closed
form, it can be computed numerically. A similar idea of computing parts of an expectation
analytically is used in [31].

3.4.4 The Reparameterization Trick

Another approach to obtain Monte Carlo gradients of an expectation is the reparameterization
trick. The main idea of this technique is to compute samples W ∼ qν(W) by transforming
samples ε from some fixed parameter-free distribution p(ε) using the variational parameters ν
as W = g(ν, ε). This allows us to rewrite the expected loss LE(ν) as

EW∼qν(W)[L(W)] = Eε∼p(ε)[L(g(ν, ε))]. (3.104)

Assuming that differentiation and integration are interchangeable, the gradient of (3.104) is
given by

∇νEε∼p(ε)[L(g(ν, ε))] = Eε∼p(ε)[∇νL(g(ν, ε))]. (3.105)

It is then straightforward to estimate the gradient by sampling ε ∼ p(ε). This is illustrated
in Figure 3.5(b). The resulting estimator typically exhibits substantially lower variance than
the log-derivative trick. However, the reparameterization trick is only applicable to continuous
distribution qν(W) for which a reparameterization W = g(ν, ε) exists.

Fortunately, this is the case for many distributions encountered in practice. Given that the
inverse cdf Φ−1

ν of a distribution is available in closed form, a sample from that distribution
can be obtained by sampling ε ∼ U([0, 1]) and computing Φ−1

ν (ε). More generally, we can often
generate samples by applying a simple transformation to samples generated from a fixed base
distribution. Many distributions belong to the location-scale family of distributions that are
specified by a location parameter µ and a scale parameter σ (e.g., a Gaussian or a uniform
distribution over an arbitrary interval). For these distributions, a sample can be generated by
computing g(µ, σ, ε) = µ+σε where ε is drawn from the base distribution specified by µ = 0 and
σ = 1. This also generalizes to the multivariate case, e.g., we can sample from a multivariate
Gaussian N (µ,Σ) by computing µ+ Σ

1
2ε for ε ∼ N (0, I). Other examples are sampling from

a log-normal distribution by exponentiation of samples from a Gaussian or sampling from a
gamma distribution by summing over several samples from exponential distributions.
The reparameterization trick is the predominant approach to optimize the variational inference

objective (3.81) using SGD. In the continuous case, many works employ a Gaussian approxima-
tion qν(W) for which the reparameterization trick is applicable. The reparameterization trick
has been brought into the machine learning community concurrently by several works, e.g., to
learn deep latent Gaussian models [98], to train variational autoencoders [62], and for various
applications such as inferring the hyperparameters of Gaussian processes [99].
Based on these works, Blundell et al. [74] employed the reparameterization trick to train a

Gaussian approximation qν(W) for DNNs. They showed improved results for a scale mixture

– 68 –

3.4 Bayesian Neural Networks Using Variational Inference

ν q W

(a) sampling node

pε ε

ν

g W

(b) reparameterization trick

νl

xl−1

⊗

µal

σ2
al

εpε

g al

(c) local reparameterization trick

Figure 3.5: Computation graphs with sampling nodes (diamonds). Red arrows indicate the forward path.
Green dashed arrows indicate the backward path. (a) Sampling directly from qν(W) blocks the
gradient flow during backpropagation. (b) The reparameterization trick moves the sampling node
away from the path to the variational parameters ν. Therefore, we can compute the gradient with
respect to ν using backpropagation. (c) The local reparameterization trick computes the Gaussian
activation distribution (µal and σ2

al) from the inputs xl−1 and the variational parameters ν.
Subsequently, the activations al are sampled using the reparameterization trick.

prior p(W) modeled by a mixture of two zero-mean Gaussians with different variances, i.e.,

p(W) = αN (0, γ2
1) + (1− α)N (0, γ2

2). (3.106)

This prior does not admit an analytic expression of the KL divergence term in (3.81), but it can
be easily optimized using the reparameterization trick.

The Local Reparameterization Trick

Although the reparameterization trick already exhibits lower variance than the log-derivative
trick, it is still possible to exploit structural properties of DNNs to reduce the variance even
further. In particular, the local reparameterization trick [33]—being reminiscent of the ideas em-
ployed in the probabilistic forward pass—pushes the uncertainty from the approximate posterior
qν(W) to the activations al of the subsequent layer. Then the standard reparameterization trick
is applied to sample from the induced activation distribution q(al) instead (see Figure 3.5(c)).
For this purpose, we assume a factorized Gaussian approximation qν(W) and that the inputs

from the previous layer xl−1 are deterministic values. Then the activations of al, computed
as sums over several random variables, follow a factorized Gaussian distribution q(aL) with
parameters

µali
=
∑
k

E[wli,k]xl−1
k and σ2

ali
=
∑
k

V[wli,k](xl−1
k)2. (3.107)

As a consequence, the activation samples al are distributed according to q(al) regardless of
whether we first sample the weights Wl and then compute the activations al or whether we
sample directly from the induced activation distribution q(al).

– 69 –

3 Bayesian Deep Learning

However, the benefit of sampling from the activations is twofold. The first benefit is concerned
with computational efficiency and is best seen by considering a practical implementation where
data samples are processed concurrently as mini-batches to exploit parallel computation. In this
case, we assume a loss L that can be written as a sum of per-sample losses `n as in (2.10). If the
reparameterization trick is applied globally to sample the weights W, these weights are reused
for the entire mini-batch. As a consequence, the estimates of the individual per-sample losses `n
might exhibit a significant covariance cov(`n, `n′) that increases the variance of their estimated
sum L. In principle, this can be avoided by sampling individual weights W for each per-sample
loss `n, but this would be highly impractical from a computational perspective. Fortunately,
this is not necessary since applying the local reparameterization trick to directly sample from
the induced activation distribution q(al) has the same effect.
The second benefit is that the variance of the gradient is reduced even if we sample a single

per-sample loss term `n. Intuitively, the reason for this is that there are many more weights than
there are activations and each of these weights is subject to its individual noise. Consequently,
the contribution of an individual weight to an activation becomes obscured due to the noise,
which is harmful during backpropagation. If we alternatively perform the local reparameteriza-
tion trick to sample the activations, there is a single point of noise injection and the contribution
of each weight16 to the sampled activations remains traceable. For a more rigorous treatment
of this statement, we refer to [33].
Compared to the probabilistic forward pass, the local reparameterization trick can be com-

puted more efficiently as it operates on deterministic inputs xl−1. This allows us to compute the
activation variance according to (3.107) instead of (3.67) and to save two linear operations (ma-
trix multiplications or convolutions) per layer. Moreover, for the local reparameterization trick
the activations al are independent, whereas the probabilistic forward pass explicitly assumes
independency since here the inputs xl−1 are stochastic. However, the issue of the probabilistic
forward pass for shared weights persists. In particular, sampling the activations al is equivalent
to sampling different weight values for each activation ali although the underlying architecture
assumes that the weights are equal.
So far, we have assumed that the variational distribution qν(W) is a Gaussian such that

the induced activation distribution q(al) is also Gaussian. However, even if the variational
distribution qν(W) is non-Gaussian, we can appeal to the central limit theorem and approximate
the activation distribution q(al) well using a Gaussian. As we will see in Chapter 5, we can even
apply the Gaussian activation approximation if the weight distributions qν(W) are discrete.
This is an important step of our method for training discrete-valued DNNs.

3.4.5 The Gumbel-Softmax Approximation
The major disadvantage of the reparameterization trick is that it is not applicable to discrete
distributions. As a consequence, one has to apply different techniques such as the more general
log-derivative trick that is known to suffer from high variance unless suitable variance reduction
techniques are used. For many applications, the variance might be too high and optimization
will not yield meaningful results in any reasonable amount of time. In these cases, it is often
sensible to reduce the variance at the cost of introducing some bias into the sampling process.
This idea is pursued by the Gumbel-softmax approximation which allows us to apply the

reparameterization trick to discrete distributions [100]. Note that the Gumbel-softmax approx-
imation has been concurrently introduced by Maddison et al. [101] under the name concrete
distribution, but we will stick to the Gumbel-softmax terminology throughout this thesis. Sam-
ples from a categorical distribution p(v) are typically generated by sampling ε ∼ U([0, 1]) and
evaluating the inverse cdf Φ−1

p (ε). The Gumbel-softmax approximation utilizes a different el-
egant technique for sampling from a categorical distribution known as the Gumbel-max trick.
16 More precisely, its associated variational parameters νi

– 70 –

3.4 Bayesian Neural Networks Using Variational Inference

p log logp

Gumbel ε + 1
τg

softmax z

(a) Gumbel-softmax reparameterization

p log logp

Gumbel ε + 1
τg

argmax

softmax

z

(b) straight-through Gumbel estimator

Figure 3.6: (a) Computation graph of the Gumbel-softmax reparameterization to obtain a sample z. Red
arrows indicate the forward path. Green dashed arrows indicate the backward path. (b) The
straight-through Gumbel estimator computes the argmax in the forward path to obtain a one-hot
encoded sample z. In the backward path, it computes the gradient of the softmax using the STE.

Given a categorical random variable with K possible outcomes {v1, . . . , vK} and corresponding
occurrence probabilities p = (p1, . . . , pK), the Gumbel-max trick generates a sample vk̃ according
to p as

k̃ = argmax
k

log(pk) + εk with εk ∼ Gumbel(0, 1). (3.108)

We can generate samples ε ∼ Gumbel(0, 1) by transforming a uniform sample ε′ according to

ε = − log(− log(ε′)) with ε′ ∼ U([0, 1]). (3.109)

The Gumbel-softmax distribution is based on one-hot encodings of the indices k corresponding
to the discrete values vk. By viewing the argmax in (3.108) as a function mapping to one-hot
encodings of the corresponding k̃ (see (2.20)), a continuous relaxation is obtained by applying
the softmax function

zk = softmaxk((log(p) + ε)/τg) = exp((log(pk) + εk)/τg)∑K
k′ exp((log(pk′) + εk′)/τg)

, (3.110)

where τg > 0 is a temperature parameter. For τg → 0, we obtain a one-hot representation of the
maximum argument. For τg → ∞, we recover a uniform distribution over the K-dimensional
probability simplex. The Gumbel-softmax reparameterization is illustrated in Figure 3.6(a).
By carefully selecting the temperature τg, one can ensure that the continuous approximation

(3.110) is sufficiently close to a one-hot vector while still allowing valuable gradient information
to flow during backpropagation. In case the sampled values are required in form of their original
discrete values vk instead of a one-hot encoding thereof, these can be recovered by computing
an expectation with respect to the softmax values z from (3.110) as

Ez[v] =
K∑
k=1

zkvk. (3.111)

However, we emphasize that this does generally not yield any of the original discrete values vk

– 71 –

3 Bayesian Deep Learning

and it depends on the application whether it is acceptable to operate on continuous relaxations
thereof. In case the values vk correspond to actual numerical values with a natural ordering, it
might be acceptable to work on their continuous relaxations. However, if the values vk are used
to encode categories and mixing these categories does not have any meaningful interpretation,
it might be required to operate on the discrete values vk. In these cases, it is proposed to apply
the STE by computing the argmax function in the forward pass and to apply the gradient of
the softmax during backpropagation. This is illustrated in Figure 3.6(b). In [100] this is also
called the straight-through Gumbel estimator.
The Gumbel-softmax approximation is used on two occasions in this thesis. In Chapter 5,

we apply the Gumbel-softmax approximation to sample from the binary distribution obtained
after the sign activation function. In this case, we have v1 = −1 and v2 = 1 and we obtain
good results using the continuous approximation. In Chapter 7, we apply the Gumbel-softmax
approximation to sample from gating variables that determine the structure of a BN. Here,
applying the continuous approximation would eliminate the probabilistic interpretation of the
BN and it is necessary to apply the STE.

3.5 Bayesian Neural Networks Using Sampling

Although HMC (see Section 3.2.4) provides excellent performance in many applications, its
running time for posterior inference does not scale well to very large datasets containing tens of
thousands of data samples or even more. The reasons for this are the same as those why batch
gradient descent does not scale to large datasets and why one usually applies SGD instead (see
Section 2.1.2). Similar to SGD, stochastic gradient MCMC methods have been developed that
utilize gradients computed from a subset of the dataset to generate new samples. We briefly
review two particular stochastic gradient MCMC methods, namely stochastic gradient Langevin
dynamics (SGLD) [102] and stochastic gradient Hamiltonian Monte Carlo (SGHMC) [103].
For our discussion about stochastic gradient MCMC methods, we adopt the terminology from

our discussion on SGD. In particular, we consider sampling of parameters θ from a continuous
parameter space Θ. For DNNs, θ corresponds to the weights W. Furthermore, we perform
sampling from a posterior distribution governed by a dataset D whose log-density is given by

log p(θ |D) =
N∑
n=1

log p(xn |θ) + log p(θ) + const, (3.112)

where the constant term corresponds to a normalization term that does not depend on the
parameters θ.

3.5.1 Stochastic Gradient Langevin Dynamics

A special algorithm, known as Langevin Monte Carlo (LMC), is obtained by performing a single
leapfrog iteration (i.e., T = 1) within HMC [104]. The name LMC stems from the fact that
it performs a simulation of Langevin dynamics. LMC necessarily lacks the desirable property
to make distant proposals in state space which, in HMC, is a direct consequence of simulating
Hamiltonian dynamics for a sufficiently large number of steps T . However, LMC is appealing
due to its algorithmic similarity to gradient descent (see Section 2.1.2). More specifically, an
update of LMC takes the form

θt = θt−1 + η

2

(
N∑
n=1
∇θ log p(xn |θt−1) +∇θ log p(θt−1)

)
+ ε, (3.113)

– 72 –

3.5 Bayesian Neural Networks Using Sampling

Algorithm 6 Stochastic Gradient Langevin Dynamics (SGLD)
1: Input: D = {x1, . . . ,xN}, initial parameters θ0, step sizes (ηt)t≥1 conforming (3.115)
2: for t = 1 to . . . do
3: Dt ← randomly select mini-batch of size NB from D
4: Draw ε ∼ N (0, Iηt)
5: g← (N/NB)∑x∈Dt ∇θ log p(x |θt−1) +∇θ log p(θt−1)
6: θt ← θt−1 + (ηt/2)g + ε
7: end for

where ε ∼ N (0, Iη). Equation (3.113) differs from the update equation of gradient descent only
in the additional noise term ε. Considering the success of stochastic optimization methods such
as SGD, it appears natural to also approximate the gradient in (3.113) using stochastic gradients
obtained from subsets of the dataset D. Indeed, after applying some modifications to (3.113),
the SGLD algorithm [102] is obtained by repeatedly applying

θt = θt−1 + ηt
2

 N

NB

∑
x∈Dt

∇θ log p(x |θt−1) +∇θ log p(θt−1)

+ εt, (3.114)

where Dt is a randomly selected mini-batch of size NB, εt ∼ N (0, Iηt), and ηt > 0 is a decaying
step size parameter satisfying

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2
t <∞. (3.115)

Algorithm 6 shows a pseudocode of SGLD. Most importantly, the variance of the noise term εt
is coupled to the decaying step size ηt, causing the algorithm to operate in two stages. In the
first stage, we assume that the parameters θt are not close to a local optimum such that the
gradient exhibits a large magnitude. Consequently, the weight updates in (3.114) are largely
determined by the stochastic gradients and, therefore, SGLD behaves much like an optimization
algorithm.
In the second stage, the influence of the noise term εt increases since (i) the gradients become

smaller and (ii) the step size ηt decreases faster than the standard deviation √ηt of the noise
term εt. This results in the exploration of the distribution such that eventually samples from
the true posterior p(θ |D) are generated.
SGLD requires the choice of a suitable step size schedule that satisfies conditions (3.115). In

[102] the step size is computed according to

ηt = αη
(βη + t)γη (3.116)

where γη ∈ (0.5, 1], resulting in three additional hyperparameters.

3.5.2 Stochastic Gradient Hamiltonian Monte Carlo

It is natural to ask whether HMC can be generalized to a stochastic version for T > 1, similarly
as LMC has been generalized to SGLD. The answer turns out to be positive [103], but the
derivation of a stochastic version of HMC requires more care. For the analysis in [103], the
stochastic gradients obtained from mini-batches are assumed to be normally distributed by
appealing to the central limit theorem. This allows us to write the true gradient ∇θ log p(θ |D)
as a stochastic gradient plus zero-mean Gaussian noise ε whose variance depends on the current

– 73 –

3 Bayesian Deep Learning

Algorithm 7 Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
1: Input: D = {x1, . . . ,xN}, initial parameters θ0, fixed step size η, momentum ξ, T
2: for t = 1 to . . . do
3: Draw v̄0 ∼ N (0, Iη)
4: θ̄0 ← θt−1

5: for k = 1 to T do
6: Dt,k ← randomly select mini-batch of size NB from D
7: Draw ε ∼ N (0, 2ηξI)
8: g← (N/NB)∑x∈Dt,k ∇θ log p(x | θ̄k−1) +∇θ log p(θ̄k−1)
9: θ̄k ← θ̄k−1 + v̄k−1

10: v̄k ← (1− ξ)v̄k−1 + ηg + ε
11: end for
12: θt ← θ̄T

13: end for

parameters θ and the size of the mini-batches NB, i.e.,

∇θ log p(θ |D) = N

NB

∑
x∈Dt

∇θ log p(x |θ) +∇θ log p(θ) + ε. (3.117)

However, by simply adding Gaussian noise to the momentum updates of HMC, (3.48) and
(3.50), the generated samples follow a distribution that exhibits increased entropy over time, and
therefore, this distribution does not correspond to the desired stationary distribution anymore.
Fortunately, we can correct for this behavior by adding a properly weighted friction term to the
momentum updates such that the stationary distribution remains invariant under the resulting
updates.
Similar as SGLD can be phrased as SGD with an additional noise term, SGHMC can be

phrased as SGD with momentum and an additional noise term. The corresponding pseudocode
is shown in Algorithm 7. The momentum formulation is appealing as experience about good
settings of the SGD hyperparameters η and ξmom in (2.11) can be used to determine the corre-
sponding SGHMC hyperparameters η > 0 and ξ ∈ (0, 1).
So far, we have ignored the fact that both algorithms, SGLD and SGHMC, introduce errors

that need to be corrected by a Metropolis-Hastings acceptance step. However, a Metropolis-
Hastings acceptance step would require an evaluation of the whole dataset D, the avoidance
of which was the motivation for using stochastic gradients in the first place. Indeed, it is
not even possible to compute the required Metropolis-Hastings acceptance probability since
the probability of the reverse step p̂(θt−1 |θt) cannot be computed. However, both SGLD and
SGHMC rely on a decaying step size and it is argued that in the limit of ηt → 0 the simulation
becomes exact and the rejection probability of a Metropolis-Hastings acceptance step becomes
negligible. Decaying step sizes, on the other hand, reduce the efficiency of the algorithm as it
takes longer to explore the state space using a smaller step size ηt. In practice, we typically trade
off some bias due to missing Metropolis-Hastings steps for more efficient exploration of the state
space with non-zero ηt. Note that there exist methods that approximate Metropolis-Hastings
steps using subsets of the data [105, 106].

– 74 –

Probabilistic Methods for Resource Efficiency in Machine Learning

4
Resource-Efficient Deep Neural Networks

While DNNs are the driving factor behind many recent success stories of machine learning, they
are notoriously data and resource hungry—a property which has recently renewed significant
research interest in resource-efficient approaches. This chapter provides an extensive overview of
the current research directions, all of which are concerned with reducing the model size and/or
improving run-time efficiency, while at the same time maintaining accuracy levels close to state-
of-the-art models. We have identified three major research directions concerned with improving
resource efficiency in DNNs (see Figure 1.1). In particular, these directions are
Quantized Neural Networks The weights of a DNN are typically stored as 32-bit floating-point

values and computing predictions requires millions of floating-point operations. Quantiza-
tion approaches reduce the number of bits required to store the weights and the activations
of DNNs. While quantization approaches obviously reduce the memory footprint of a DNN,
the selected numerical formats potentially also facilitate faster predictions using cheaper
arithmetic operations. Even reducing precision down to binary or ternary values works
reasonably well and essentially reduces DNNs to hardware-friendly logical circuits.

Network Pruning Starting from a fixed, potentially large DNN architecture, pruning approaches
remove parts of the architecture during training or after training as a post-processing step.
The parts being removed range from the very local scale of individual weights—which is
called unstructured pruning—to a more global scale of neurons, channels, or even entire
layers—which is called structured pruning. On the one hand, unstructured pruning is
typically less sensitive to accuracy degradation, but special sparse matrix operations are
required to obtain a computational benefit. On the other hand, structured pruning is more
sensitive to accuracy degradation but the resulting data structures remain dense such that
common highly optimized dense matrix operations available on most off-the-shelf hardware
can be used.

Structural Efficiency This category comprises a diverse set of approaches that achieve resource
efficiency at the structural level of DNNs: The idea of knowledge distillation is to train
a small student DNN to mimic the behavior of a larger teacher DNN, which has been
shown to yield improved results compared to training the small DNN directly. Weight
sharing methods reduce the memory footprint by using only few weights that are shared
among the connections. Several works have investigated special matrix structures that
require fewer parameters and allow for faster matrix multiplications—the main workload
in fully connected layers. Furthermore, there exist several manually designed architectures
that introduce lightweight building blocks or modify existing building blocks to improve
resource efficiency. Most recently, NAS methods have emerged that discover efficient DNN
architectures automatically.

In the following overview, we will motivate each of these categories in turn and discuss repre-
sentative approaches. Since not every approach can be attributed clearly to a single category,
we present the individual approaches in the category where we think their contribution is most
significant. Furthermore, we emphasize that many of the presented techniques are not mutually
exclusive and that they can potentially be combined to further enhance resource efficiency. For
instance, one can both sparsify a model and reduce arithmetic precision.

– 75 –

4 Resource-Efficient Deep Neural Networks

This chapter is largely based on our survey paper [107]. Besides some minor adaptations, this
chapter extends the literature overview in our initial version of [107] by some references. Most
importantly, we included literature concerned with mixed-precision quantization, i.e., methods
that infer individual bit widths for different parts of a DNN (e.g., per layer) during the training
procedure. Moreover, we extended the review on knowledge distillation methods by further
references.

4.1 Quantized Neural Networks
Quantization in DNNs is concerned with reducing the number of bits used for the representation
of the weights and the activations.17 The reduction in memory requirements are obvious: Using
fewer bits for the weights results in a lower memory overhead for storing the corresponding
model, and using fewer bits for the activations results in a lower memory overhead for computing
predictions. Furthermore, representations using fewer bits often facilitate faster computation.
For instance, when quantization is driven to the extreme with binary weights w ∈ {−1, 1}
and binary activations x ∈ {−1, 1}, floating-point or fixed-point multiplications are replaced by
hardware-friendly logical XNOR and bitcount operations. In this way, a sophisticated DNN is
essentially reduced to a logical circuit.
However, training such discrete-valued DNNs18 is difficult as they cannot be directly opti-

mized using gradient-based methods. The challenge is to reduce the number of bits as much as
possible while at the same time keeping the prediction accuracy close to that of a well-tuned
full-precision DNN. In the following, we provide a literature overview of approaches that train
reduced-precision DNNs, and, in a broader view, we also consider methods that use reduced-
precision computations during backpropagation to facilitate low-resource training.

4.1.1 Early Quantization Approaches
Approaches for reduced-precision computations date back at least to the early 1990s. Höhfeld
and Fahlman [108, 109] rounded the weights during training to fixed-point formats with different
numbers of bits. They observed that training eventually stalls as small gradient updates are
always rounded to zero. As a remedy, they proposed stochastic rounding, i.e., rounding values
to the nearest value with a probability proportional to the distance to the nearest value. These
quantized gradient updates are correct in expectation, do not cause training to stall, and yield
good performance with substantially fewer bits than deterministic rounding. More recently,
Gupta et al. [110] have shown that stochastic rounding can also be applied to modern deep
architectures, as demonstrated on a hardware prototype.
Lin et al. [111] propose a method to reduce the number of multiplications required during

training. At forward propagation, the weights are stochastically quantized to either binary
weights w ∈ {−1, 1} or ternary weights w ∈ {−1, 0, 1} to remove the need for multiplications
at all. During backpropagation, inputs and hidden neurons are quantized to powers of two,
reducing multiplications to cheaper bit shift operations, and leaving only a negligible number
of floating-point multiplications to be computed. However, the speed-up is limited to training
since for testing the full-precision weights are required.
Courbariaux et al. [112] empirically studied the effect of different numeric formats (i.e.,

floating-point, fixed-point, and dynamic fixed-point) with varying bit widths on the performance

17 In this context, activation quantization typically refers to quantizing the layer outputs xl = hl(al) after the
activation function hl has been applied. Therefore, activation quantization is often modeled directly through
the activation function hl itself, e.g., by using a piecewise constant function.

18 Due to finite precision of computer arithmetic, in fact any DNN is discrete-valued. However, we use this term
here to emphasize the extremely small number of values.

– 76 –

4.1 Quantized Neural Networks

xl−1 conv al xl

Wl
q

quantWl

id

Forward path

Backward path

Figure 4.1: STE in a convolutional layer. The green boxes indicate differentiable functions. The red boxes
indicate piecewise constant functions whose gradient is zero almost everywhere. The blue box
indicates learnable weights. quant denotes a quantization function, e.g., a rounding function,
and id is the identity function. During forward propagation, the red path is followed, whereas
during backpropagation, the dashed green path is followed to avoid the red zero-gradient boxes.

of DNNs. Lin et al. [113] consider fixed-point quantization of pre-trained full-precision DNNs.
They formulate a convex optimization problem to minimize the total number of bits required
to store the weights and the activations under the constraint that the total output signal-to-
quantization noise ratio is larger than a certain prespecified value. A closed-form solution of the
convex objective yields layer-specific bit widths.

4.1.2 Quantization-Aware Training

Quantization operations, being piecewise constant functions with either undefined or zero deriva-
tives, are not applicable to gradient-based learning using backpropagation. In recent years, the
STE [14] (see Section 2.1.4) became the method of choice to compute an approximate gradient
for training DNNs with weights that are represented using a very small number of bits. Such
methods typically maintain a set of full-precision weights that are quantized during forward
propagation. During backpropagation, the gradients are propagated through the quantization
functions by assuming that their gradient equals one. In this way, the full-precision weights
are updated using gradients computed at the quantized weights. At test-time, the full-precision
weights are abandoned and only the quantized reduced-precision weights are kept. In a similar
manner, many methods employ the STE to approximate the gradient for the quantization of
activations. Figure 4.1 shows the computation graph of a typical DNN layer using quantized
weights and activations. We refer to this scheme as quantization-aware training since quantiza-
tion is an essential part during forward propagation, and it is intuitive to think of the real-valued
weights becoming robust to quantization.
In [114], binary weight DNNs are trained using the STE to get rid of expensive floating-point

multiplications. They consider deterministic rounding using the sign function and stochastic
rounding using probabilities determined by the hard sigmoid function max(0,min(1, (w+1)/2)).
During backpropagation, a set of auxiliary full-precision weights is updated based on the gra-
dients of the quantized weights. Hubara et al. [115] extended this work by also quantizing the
activations to a single bit using the sign activation function. This reduces the computational
burden dramatically as floating-point multiplications and additions are reduced to hardware-
friendly logical XNOR and bitcount operations, respectively.
Li et al. [116] trained ternary weights w ∈ {−α, 0, α}. Their quantizer sets weights whose

magnitude is lower than a certain threshold ∆ to zero, while the remaining weights are set to
±α according to their sign. Their approach determines α > 0 and ∆ during forward propagation
by approximately minimizing the squared quantization error of the real-valued weights. Zhu
et al. [117] extended this work to ternary weights w ∈ {−α, 0, β} where α > 0 and β > 0
are trainable parameters subject to gradient updates. They propose to select ∆l based on the

– 77 –

4 Resource-Efficient Deep Neural Networks

maximum full-precision weight magnitude in each layer l, i.e., ∆l = γ · max{|w| : w ∈ Wl}
with γ being a hyperparameter. These asymmetric weights considerably improve performance
compared to symmetric weights as used in [116].
Rastegari et al. [118] approximate full-precision weight filters in CNNs as W = αB where α is

a scalar and B is a binary weight matrix. This reduces the bulk of floating-point multiplications
inside the convolutions to either additions or subtractions and only requires a single multiplica-
tion per output neuron with the scalar α. In a further step, the layer inputs xl−1 are quantized
in a similar way to perform the convolution using only efficient XNOR operations and bitcount
operations, followed by two floating-point multiplications per output neuron. Again, the STE
is used during backpropagation. Lin et al. [119] generalized the ideas of [118] by approximating
the full-precision weights using linear combinations of multiple binary weight filters for improved
classification accuracy.
While most activation binarization methods use the sign function which can be seen as an

approximation to the tanh function, Cai et al. [120] proposed a half-wave Gaussian quantization
that more closely resembles the predominant ReLU activation function.
Motivated by the fact that weights and activations typically exhibit a non-uniform distribu-

tion, Miyashita et al. [121] proposed to quantize values to powers of two. Their representation
allows getting rid of expensive multiplications, and they report higher robustness to quantization
than linear rounding schemes using the same number of bits. Zhou et al. [122] proposed incre-
mental network quantization where the weights of a pre-trained DNN are first partitioned into
two sets. The weights in the first set are quantized to either zero or powers of two. The weights
in the second set are kept at full precision and retrained to recover from the potential accuracy
degradation due to quantization. They iterate partitioning, quantization, and retraining until
all weights are quantized.
Jacob et al. [123] proposed a quantization scheme that accurately approximates floating-point

operations using only integer arithmetic to speed up computation. During training, their forward
pass simulates the quantization step to keep the performance of the quantized DNN close to
the performance of using single-precision. At test-time, weights are represented as 8-bit integer
values, reducing the memory footprint by a factor of four.
Liu et al. [124] introduced Bi-Real net, a ResNet-inspired architecture where the residual

path is implemented with efficient binary convolutions while the shortcut path is kept real-
valued to preserve the expressiveness of the DNN. The residual in each layer is computed by
first transforming the input with the sign activation, followed by a binary convolution, and a
final batch normalization step.
Instead of using a fixed quantizer, in LQ-Net [125] the quantizer is adapted during training.

The proposed quantizer is inspired by the representation of integers as linear combinations
v>b with v = (20, . . . , 2K−1) and b ∈ {0, 1}K . The key idea is to consider a quantizer that
assigns values to the nearest value representable as such a linear combination v>b and to
treat v ∈ RK as trainable parameters. It is shown that such a quantizer is compatible with
efficient bit operations. The quantizer is optimized during forward propagation by minimizing
the quantization error objective ‖Bv − x‖2 for B ∈ {−1, 1}N×K and v by alternately fixing B
and minimizing v and vice versa. It is proposed to use layerwise quantizers for the activations
and channel-wise quantizers for the weights, i.e., an individual quantizer for each layer and
channel, respectively.
Relaxed Quantization [126] introduces a stochastic differentiable soft rounding scheme. By

injecting additive noise to the deterministic weights before rounding, one can compute probabil-
ities of the weights being rounded to specific values in a predefined discrete set. Subsequently,
these probabilities are used to differentiably round the weights using the Gumbel-softmax ap-
proximation [100]. Since this soft rounding scheme produces only values that are close to values
from the discrete set but which are not exactly from this set, the authors also propose a hard
variant using the STE.
Dong et al. [127] introduced Hessian-aware mixed-precision quantization for DNNs. Their

– 78 –

4.1 Quantized Neural Networks

method quantifies the sensitivity of individual DNN blocks to weight quantization using the
largest eigenvalue of the block-wise Hessian matrices which can be computed using the power
iteration method. They compute two different orderings of the individual DNN blocks, both
of which are based on these eigenvalues. The first ordering determines a relative ordering of
the bit widths of individual blocks. This substantially reduces the exponential search space
of layer-specific weights and allows them to manually set appropriate bit widths. The second
ordering takes these bit widths into account and determines the sequence in which blocks are
quantized and fine-tuned using quantization-aware training.

A linear quantizer has three characteristic properties, i.e., (i) a step size Qd, (ii) a dynamic
range Qmax, and (iii) the number of bits Qb. Since these quantities are interrelated according to

Qmax = (2Qb−1 − 1)Qd, (4.1)

a linear quantizer is specified by knowing any two of them [128]. Given fixed layerwise bit
widths Qlb, Esser et al. [129] incorporated layerwise step sizes Qld as trainable parameters in
the computation graph. By training the step sizes Qld using the STE, they are adapted to the
given objective. This is in contrast to previous work, such as XNOR-Net [118], that determine
the step size Qld using certain statistics obtained from the values to be quantized. Uhlich et
al. [128] extended this idea to mixed-precision quantization. They investigated the three different
possibilities to specify a linear quantizer (4.1) by only two of its characteristic properties and
discovered substantial differences in the training behavior. They propose to parameterize the
quantizers using the step size Qld and the dynamic range Qlmax and to train these values using
backpropagation and the STE to obtain layerwise bit widths Qlb.
There also exist works that perform quantization during backpropagation to facilitate resource-

efficient training. Zhou et al. [130] presented several quantization schemes for the weights and
the activations that allow for flexible bit widths. Furthermore, they also propose a quantiza-
tion scheme for backpropagation to facilitate low-resource training. In accordance with earlier
work mentioned above, they note that stochastic quantization is essential for their approach. In
[131], weights, activations, weight gradients, and activation gradients are subject to customized
quantization schemes that allow for variable bit widths and facilitate integer arithmetic during
training and testing. In contrast to [130], the work in [131] accumulates weight changes to
low-precision weights instead of full-precision weights.
While most work on quantization based approaches is empirical, some works gained more

theoretical insights [132, 133]. The recent work of Shekhovtsov et al. [16] has shown that for
stochastic binary networks the STE arises from particular linearization approximations.
In Chapter 7, we show that quantization-aware training can be applied to other model classes

beyond DNNs. In particular, we quantize the log-probability parameters of BN classifiers and
contrast these models with quantized DNNs [134]. As opposed to other works that mostly
consider DNN quantization in the context of large architectures and datasets, we find that
quantization-aware training also performs well in the small-scale setting. Our work shows that
BNs may provide a viable alternative to DNNs when it comes to trading off between prediction
accuracy and computational aspects of the model.

4.1.3 Bayesian Approaches for Quantization

In this section, we review some quantization approaches, most of which are closely related to
the Bayesian variational inference framework (see Section 3.4).
The work of Achterhold et al. [135] builds on the variational dropout based pruning approach

of Louizos et al. [136] discussed in Section 4.2.3. They introduce a mixture of log-uniforms prior
whose mixtures are centered at predefined quantization values. Consequently, the approximate
posterior also concentrates at these values such that weights can be safely quantized without
requiring a fine-tuning procedure.

– 79 –

4 Resource-Efficient Deep Neural Networks

The following works in this section directly operate on discrete weight distributions and,
consequently, do not require a rounding procedure. Soudry et al. [83] approximate the true
posterior p(W |D) over discrete weights using expectation propagation [54] with closed-form
online updates. Starting with an uninformative approximation qν(W), their approach combines
the current approximation qν(W) (serving as the prior in Bayes’ rule (3.3)) with the likelihood
for a single-sample dataset Dn = {(xn, yn)} to obtain a refined posterior. To obtain a closed-form
refinement step, they propose several approximations.

Although deviating from the Bayesian variational inference framework as no similarity measure
to the true posterior is optimized, the approach of Shayer et al. [137] trains a distribution qν(W)
over either binary weights w ∈ {−1, 1} or ternary weights w ∈ {−1, 0, 1}. They propose to
minimize an expected loss EW∼qν(W)[L(W;D)] for the variational parameters ν with gradient-
based optimization using the local reparameterization trick [33]. After training has finished,
the discrete weights are obtained by either sampling or taking a mode from qν(W). Since their
approach is limited to the ReLU activation function, Peters and Welling [138] extended their
work to the sign activation function. This involves several non-trivial changes since the sign
activation, due to its zero derivative, requires that the local reparameterization trick must be
performed after the sign function. Consequently, distributions need to be propagated through
commonly used building blocks such as batch normalization and pooling operations.

Our work [139] presented in Chapter 5 directly fits into the line of research of Shayer et
al. [137] and Peters and Welling [138]. We extend their works to beyond three distinct weights
and, similarly as in [138], we apply the discrete sign activation function. Moreover, we intro-
duce technical improvements such as a distribution-aware max pooling operation and a simpler
initialization scheme for the variational distribution qν(W).

Van Baalen et al. [88] propose a Bayesian mixed-precision quantization method for power-
of-two bit widths. Their method is based on a recursive view of quantization where residual
quantization errors are repeatedly quantized. They introduce gates that determine how many
recursive quantization steps should be performed which in turn determines the number of used
bits. While the quantization itself is subject to the STE, they propose to train gate probabilities
using the Bayesian variational inference framework. The use of fewer bits for quantization is
encouraged using a specific prior and, through an additional zero-bit gate, their framework
simultaneously allows for weight pruning.

Havasi et al. [140] introduced a novel Bayesian compression technique that we present here in
this section although it is rather a coding technique than a quantization technique. In a nutshell,
their approach first computes a variational distribution qν(W) over real-valued weights using
mean field variational inference and then it encodes a sample W from qν(W) in a smart way.
They construct an approximation q̃(W) to qν(W) by importance sampling using the prior p(W)
as

qν(W) ≈ q̃(W) =
2K∑
i=1

qν(Wi)
p(Wi) δWi(W) with Wi ∼ p(W), (4.2)

where δWi denotes a point mass located at Wi. In the next step, a sample W from q̃(W)
(or, equivalently, an approximate sample from qν(W)) is drawn which can be encoded by the
corresponding number k ∈ {1, . . . , 2K} using K bits. Using the same random number generator
initialized with the same seed as in (4.2), the weights W can be recovered by sampling 2K
weights Wi from the prior p(W) and selecting Wk. Since the number of samples 2K required
to obtain a reasonable approximation to qν(W) in (4.2) grows exponentially with the number
of weights, this sampling based compression scheme is performed for smaller weight blocks such
that each weight block can be encoded with K bits.

– 80 –

4.2 Network Pruning

4.2 Network Pruning

Network pruning methods aim to achieve parameter sparsity by setting a substantial number
of DNN weights to zero. Subsequently, the sparsity is exploited to improve resource efficiency
of the DNN. On the one hand, there exist unstructured pruning approaches that set individual
weights, regardless of their location in a weight tensor, to zero. Unstructured pruning approaches
are typically less sensitive to accuracy degradation, but they require special sparse tensor data
structures that in turn yield practical efficiency improvements only for very high sparsity. On
the other hand, structured pruning methods aim to set whole weight structures to zero, e.g.,
by setting all weights of a matrix column to zero we would effectively prune an entire neuron.
Conceptually, structured pruning is equivalent to removing tensor dimensions such that the
reduced tensor remains compatible with highly optimized dense tensor operations.

In this section, we start with the unstructured case which includes many of the earlier ap-
proaches and continue with structured pruning that has been the focus of more recent works.
Then we review approaches that relate to Bayesian principles before we discuss approaches that
prune structures dynamically during forward propagation.

4.2.1 Unstructured Pruning

One of the earliest approaches to reduce the network size is the optimal brain damage algorithm of
LeCun et al. [141]. Their main finding is that pruning based on weight magnitude is suboptimal,
and they propose a pruning scheme based on the increase in loss function. Assuming a pre-
trained network, a local second-order Taylor expansion with a diagonal Hessian approximation is
employed that allows us to estimate the change in loss function caused by weight pruning without
re-evaluating the costly network function. Removing parameters is alternated with retraining the
pruned network. In this way, the model size can be reduced substantially without deteriorating
its performance. Hassibi and Stork [142] found the diagonal Hessian approximation to be too
restrictive, and their optimal brain surgeon algorithm uses an approximated full covariance
matrix instead. While their method, similar as in [141], prunes weights that cause the least
increase in loss function, the remaining weights are simultaneously adapted to compensate for
the negative effect of weight pruning. This bypasses the need to alternate several times between
pruning and retraining the pruned network.
However, it is not clear whether these approaches scale up to modern DNN architectures since

computing the required (diagonal) Hessians is substantially more demanding (if not intractable)
for millions of weights. Therefore, many of the more recently proposed techniques still resort
to magnitude-based pruning. Han et al. [143] alternate between pruning connections below a
certain magnitude threshold and retraining the pruned DNN. The results of this simple strategy
are impressive, as the number of parameters in pruned DNNs is an order of magnitude smaller
(9× for AlexNet and 13× for VGG-16) than in the original networks. Hence, this work shows
that DNNs are often heavily over-parameterized. In a follow-up paper, Han et al. [144] proposed
deep compression, which extends the work in [143] by a parameter quantization and parameter
sharing step, followed by Huffman coding to exploit the non-uniform weight distribution. This
approach yields a reduction in memory footprint by a factor of 35–49 and, consequently, a
reduction in energy consumption by a factor of 3–5.
Guo et al. [145] discovered that irreversible pruning decisions limit the achievable sparsity

and that it is useful to reincorporate weights pruned in an earlier stage. In addition to each
dense weight matrix W ∈ Rdl×dl−1 , they maintain a corresponding binary mask matrix T ∈
{0, 1}dl×dl−1 that determines whether a weight is currently pruned or not. In particular, the
actual weights used during forward propagation are obtained as W�T where � denotes element-
wise multiplication. Their method alternates between updating the weights W based on gradient

– 81 –

4 Resource-Efficient Deep Neural Networks

descent, and updating the weight masks T by thresholding the real-valued weights according to

T t+1
i,j =


0 if |wti,j | ∈ [0, α)
T ti,j if |wti,j | ∈ [α, β)
1 if |wti,j | ∈ [β,∞)

, (4.3)

where α and β are two thresholds and t refers to the iteration number. Most importantly, weight
updates are also applied to the currently pruned weights according to T using the STE, such
that pruned weights can reappear in (4.3). This reduces the number of parameters of AlexNet
by a factor of 17.7 without deteriorating performance.

4.2.2 Structured Pruning

In [146], a determinantal point process (DPP) is used to find a group of neurons that are
diverse and exhibit little redundancy. Conceptually, a DPP for a given ground set S defines a
distribution over subsets S ⊆ S where subsets containing diverse elements have high probability.
They consider S to be the set of N -dimensional vectors that individual neurons compute over
the whole dataset. Their approach samples a diverse set of neurons S ⊆ S according to the
DPP and then prunes the other neurons S \S. To compensate for the negative effect of pruning,
the outgoing weights of the remaining neurons after pruning are adapted so as to minimize the
activation change of the next layer.
Wen et al. [147] incorporated group lasso regularizers in the objective to obtain different kinds

of sparsity in the course of training. They were able to remove filters, channels, and even entire
layers in architectures containing shortcut connections. Liu et al. [148] proposed to introduce
an `1-norm regularizer on the scale parameters γbn of batch normalization and to set γbn = 0
by thresholding. Since each batch normalization parameter γbn corresponds to a particular
channel in the network, this results in channel pruning with minimal changes to existing training
pipelines. In [149], the outputs of different structures are scaled with individual trainable scaling
factors. By using a sparsity enforcing `1-norm regularizer on these scaling factors, the outputs
of the corresponding structures are driven to zero and can be pruned.
Rather than pruning based on small parameter values, ThiNet [150] is a data-driven approach

that prunes channels having the least impact on the subsequent layer. To prune channels in
layer l, they propose to sample several activations xl+1

i,w,h at randomly selected spatial locations
(w, h) and channels i of the following layer, and to greedily prune channels whose removal results
in the least increase of squared error over these randomly selected activations. After pruning,
they adapt the remaining filters to minimize the squared reconstruction error by minimizing a
least squares problem.
Louizos et al. [151] propose to multiply weights with stochastic binary 0-1 gates associated

with trainable probability parameters that effectively determine whether a weight should be
pruned or not. They formulate an expected loss with respect to the distribution over the
stochastic binary gates. By incorporating an expected `0-norm regularizer over the weights,
the probability parameters associated with these gates are encouraged to be close to zero. To
enable the use of the reparameterization trick, a continuous relaxation of the binary gates using
a modified binary Gumbel-softmax distribution is used [100]. They show that their approach
can be used for structured sparsity by associating the stochastic gates to entire structures such
as channels. Li and Ji [152] extended this work by using the recently proposed unbiased ARM
gradient estimator [153] instead of using the biased Gumbel-softmax approximation.

– 82 –

4.3 Structural Efficiency in Deep Neural Networks

4.2.3 Bayesian Approaches for Network Pruning

In [74, 89], mean field variational inference is employed to obtain a factorized Gaussian approx-
imation qν(W), i.e., instead of learning a deterministic weight w per connection, they train for
each connection a weight mean µw and weight variance σ2

w. After training, weights are pruned
by thresholding the “signal-to-noise ratio” |µw/σw|.
Some pruning approaches are based on variational dropout [33] which interprets dropout

as performing variational inference with specific prior and approximate posterior distributions.
Within this framework, the otherwise fixed dropout rates αldo of Gaussian dropout appear as free
parameters that can be optimized to improve a variational lower bound. Molchanov et al. [154]
exploited this freedom to optimize individual weight dropout rates αw such that weights w can
be safely pruned if their dropout rate αw is large. This idea has been extended in [136] by using
sparsity enforcing priors and assigning dropout rates to groups of weights that are all connected
to the same structure, which in turn allows for structured pruning. Furthermore, they show how
their approach can be used to determine an appropriate bit width for each weight by exploiting
the well-known connection between Bayesian inference and the MDL principle [87].

4.2.4 Dynamic Network Pruning

So far, we have presented methods that result in a fixed reduced architecture. In the following,
we present methods that determine dynamically in the course of forward propagation which
structures should be computed or, equivalently, which structures should be pruned. The intuition
behind this idea is to vary the time spent for computing predictions based on the difficulty of
the given input samples x0.
Lin et al. [155] proposed to train, in addition to the DNN, a RNN decision network which

determines the channels to be computed using reinforcement learning. In each layer, the fea-
ture maps are compressed using global pooling and fed into the RNN which aggregates state
information over the layers to compute its pruning decisions.
In [156], convolutional layers of a DNN are extended by a parallel low-cost convolution whose

output after the ReLU function is used to scale the outputs of the potentially high-cost convo-
lution. Due to the ReLU function, several outputs of the low-cost convolution will be exactly
zero such that the computation of the corresponding output of the high-cost convolution can be
omitted. For the low-cost convolution, they propose to use weight tensors W ∈ R1×1×dl−1×dl and
W ∈ RK×K×dl−1×1. However, practical speed-ups are only reported for the K ×K convolution
where all channels at a given spatial location might get set to zero.
In a similar approach proposed by Gao at el. [157], the spatial dimensions of a feature map

are reduced by global average pooling to a vector u ∈ Rdl−1 which is linearly transformed to
v ∈ Rdl using a single low-cost fully connected layer. To obtain a sparse vector s ∈ Rdl , v is
fed into the ReLU function, followed by a k-winner-takes-all function that sets all entries of a
vector to zero that are not among the k largest entries in absolute value. By multiplying s in a
channel-wise manner to the output of a high-cost convolution, at least dl − k channels will be
zero and need not be computed. The number of channels k is derived from a predefined minimal
pruning ratio hyperparameter.

4.3 Structural Efficiency in Deep Neural Networks

In this section, we review strategies that establish certain structural properties in DNNs to
improve computational efficiency. Each of the proposed subcategories in this section follows
rather different principles and the individual techniques might not be mutually exclusive.

– 83 –

4 Resource-Efficient Deep Neural Networks

4.3.1 Weight Sharing

Another technique to reduce the model size is weight sharing. Before we start, we note that
weight sharing and quantization methods (see Section 4.1) are closely related: Quantization
methods often have an inherent weight sharing property since the number of possible quanti-
zation values is often much smaller than the number of weights. However, the purpose of a
method is typically different depending on which category it belongs to. On the one hand, the
focus of weight quantization methods typically lies on the employed numerical formats. The
purpose of these formats is to reduce the storage per weight and to facilitate more efficient
computations. Furthermore, the number of distinct weight values is typically rather small and
fixed, and the particular weight values are often constrained or even fixed in advance. On the
other hand, the purpose of weight sharing is to reduce the memory by reducing the overall num-
ber of distinct weight values. For these methods, the particular weight values typically remain
unconstrained. Note that some methods cannot be clearly attributed to either category, e.g., in
deep compression [144] weight sharing and quantization are in part used synonymously.
In [76], a hashing function is used to randomly group network connections into “buckets”,

where the connections in each bucket share the same weight value. The advantage of their
approach is that weight assignments need not be stored explicitly since they are given implicitly
by the hashing function. The authors show a memory footprint reduction by a factor of 10 while
keeping the predictive performance essentially unaffected.
Ullrich et al. [158] extended the soft weight sharing approach proposed in [75] to achieve both

weight sharing and sparsity. The idea is to select a Gaussian mixture model prior over the weights
and to train both the weights as well as the parameters of the mixture components. During
training, the mixture components collapse to point measures and each weight gets attracted by
a certain weight component. After training, weight sharing is obtained by assigning each weight
to the mean of the component that best explains it, and weight pruning is obtained by assigning
a relatively high mixture mass to a component with a fixed mean at zero.
Our work [159] presented in Chapter 6 utilizes weight sharing to reduce the memory footprint

of a large Bayesian ensemble of DNNs. The weight sharing is enforced by introducing a DP prior
over the weight prior distribution. We propose a sampling based inference scheme by alternately
sampling weight assignments using Gibbs sampling and sampling weights using HMC [69, 70].
By using the same weight assignments for multiple weight samples, the memory overhead for
the weight assignments becomes negligible and the total memory footprint of an ensemble is
reduced.

4.3.2 Knowledge Distillation

Knowledge distillation is a method where the knowledge contained in a large teacher model is
transferred to a smaller student model. In the first step, a large teacher model is obtained with
conventional training methods on the given training data. Subsequently, the smaller student
model is trained on data where the ground truth labels have been replaced by the soft labels
obtained from the output of the teacher model, e.g., from the softmax output of a DNN. It has
been shown that this substantially increases the accuracy of the student model compared to
directly training on the given training data.
This general scheme is model agnostic, and early works applied knowledge distillation to

compress ensembles of shallow neural networks [160] and other types of classifiers [161] into a
single neural network. Zeng and Martinez [160] have shown that training on soft labels obtained
from the teacher results in higher accuracy than training on the actual hard predictions. The
work of Bucila [161] emphasizes the ability to train the student on unlabeled data to further
reduce the accuracy gap between student and teacher. In addition, they presented a method to
generate new synthetic inputs from the given training set, which might be useful if additional
unlabeled data is limited or not available. They showed that the accuracy of the student can

– 84 –

4.3 Structural Efficiency in Deep Neural Networks

improve substantially when trained on these synthetically generated inputs.
Ba and Caruana [162] applied these ideas to investigate the importance of depth in a DNN.

They trained shallower (but not necessarily smaller) neural networks by mimicking the output
activations aL produced by a teacher DNN before applying the softmax function. The resulting
shallow models perform similar as their deeper counterparts which was not achievable by training
the shallow model on the ground truth targets directly. Therefore, the authors conclude that
shallower models are as expressive as deeper models but they are more difficult to train.

The work of Li et al. [163] and Hinton et al. [164] applied knowledge distillation with the main
focus on reducing model complexity of a large teacher DNN. In [164], it is proposed to obtain
the soft labels ŷ from the teacher by scaling the output activations with a temperature τ > 0 as

ŷi = exp(aLi /τ)∑
j exp(aLj /τ)

. (4.4)

For τ > 1, the labels tend to become more uniform which has been reported to facilitate training.
Furthermore, they propose to utilize the ground truth labels by minimizing a weighted average
of the traditional cross-entropy loss based on the ground truth labels y and the knowledge
distillation loss based on the soft targets ŷ in (4.4). Noteworthy, it was the work of Hinton et
al. [164] that coined the term knowledge distillation.

FitNets [165] extend these ideas by also transferring knowledge from intermediate layers. They
select an intermediate layer from the teacher DNN as the hint layer which they try to mimic
in an intermediate guide layer of the student DNN. Since the hint layer and the guide layer are
generally of different size, they introduce a regressor that predicts the hint layer from the guide
layer. This ensures that the guide layer contains the same information as the hint layer. The
proposed procedure operates in two stages. In the first stage, the student is trained up to the
guide layer by minimizing the discrepancy between guide and hint layer. In the second stage,
the whole student DNN is trained using conventional knowledge distillation as in [164].
Kim et al. [166] argue that matching the raw features of certain intermediate layers as in [165]

is suboptimal since it is difficult to compare individual layers of different DNNs. Therefore,
they propose a method to match more understandable factors extracted from the intermediate
layers of the student and the teacher DNNs. Starting from a pre-trained teacher DNN, they
first train an autoencoder which they call paraphraser to extract understandable factors from
a selected intermediate layer of the teacher DNN. The student DNN is extended by a regressor
which they call translator whose purpose is to predict the paraphraser factors from the features
of a selected intermediate layer. The student DNN is then trained to simultaneously minimize
the cross-entropy loss on the ground truth labels and the difference between paraphraser and
translator output. They employ the paraphraser and the translator after the last convolutional
layer in their DNNs.

In the context of quantization, knowledge distillation has been used to reduce the accuracy gap
between real-valued DNNs and quantized DNNs [167, 168]. In particular, a real-valued teacher
DNN is used to improve the accuracy of a quantized teacher DNN. Mishra and Marr [167] showed
improved results using three different modes of knowledge distillation training, including a mode
where the student and the teacher are trained simultaneously from scratch.
Phuong and Lampert [169] transferred knowledge between different parts of the same model.

They employ multi-exit architectures which provide anytime predictions after certain inter-
mediate layers; therefore, allowing for a trade-off between accuracy and prediction latency at
run-time. The knowledge from the (most accurate) final layer is transferred to the earlier exits
to improve their accuracy. Furthermore, they show that the earlier layers can be trained with
unlabeled data in a semi-supervised setting.
In a Bayesian context, Korattikara et al. [170] applied knowledge distillation to condense a

large ensemble of DNNs, for instance, obtained by sampling from the posterior distribution
p(W |D). In this way, the predictive distribution (3.52) obtained by averaging the outputs of

– 85 –

4 Resource-Efficient Deep Neural Networks

the individual models can be transferred to a single DNN. Their method trains a single student
DNN using the outputs of teacher DNNs that are generated on the fly using SGLD [102].

4.3.3 Special Matrix Structures

In this section, we review approaches that aim at reducing the model size by employing effi-
cient matrix representations. There exist several methods using low-rank decompositions which
represent a large matrix (or a large tensor) using only a fraction of the parameters. In most
cases, the implicitly represented matrix is never computed explicitly such that also a compu-
tational speed-up is achieved. Furthermore, there exist approaches using special matrices that
are specified by only few parameters and whose structure allows for extremely efficient matrix
multiplications.
Denil et al. [171] proposed a method that is motivated by training only a subset of the

weights and predicting the values of the other weights from this subset. In particular, they
represent weight matrices W ∈ Rdl×dl−1 using a low-rank approximation UV with U ∈ Rdl×d′ ,
V ∈ Rd′×dl−1 , and d′ < min{dl−1, dl} to reduce the number of parameters. Instead of learning
both factors U and V, prior knowledge, such as smoothness of pixel intensities in an image, is
incorporated to compute a fixed V using kernel techniques or autoencoders, and only the factor
U is learned.
In [172], the tensor train matrix format is employed to substantially reduce the number of

parameters required to represent large weight matrices of fully connected layers. Their approach
enables the training of very large fully connected layers with relatively few parameters, and they
achieve improved performance compared to simple low-rank approximations.
Denton et al. [173] propose specific low-rank approximations and clustering techniques for

individual layers of pre-trained CNNs to reduce both memory footprint and computational
overhead. Their approach yields substantial improvements for both the computational bottle-
neck in the convolutional layers and the memory bottleneck in the fully connected layers. By
fine-tuning after applying their approximations, the performance degradation is kept at a decent
level. Jaderberg et al. [174] propose two different methods to approximate pre-trained CNN fil-
ters as combinations of rank-1 basis filters to speed up computation. The rank-1 basis filters are
obtained either by minimizing a reconstruction error of the original filters or by minimizing a
reconstruction error of the outputs of the convolutional layers. Lebedev et al. [175] approximate
the convolution tensor using the canonical polyadic (CP) decomposition—a generalization of
low-rank matrix decompositions to tensors—using nonlinear least squares. Subsequently, the
convolution using this low-rank approximation is performed by four consecutive convolutions,
each with a smaller filter, to reduce the computation time substantially.
In [176], the weight matrices of fully connected layers are restricted to circulant matrices

W ∈ Rd×d, which are fully specified by only d parameters. While this dramatically reduces the
memory footprint of fully connected layers, circulant matrices also facilitate faster computation
as matrix-vector multiplication can be efficiently computed using the fast Fourier transform. In
a similar vein, Yang et al. [177] reparameterize matrices W ∈ Rd×d of fully connected layers
using the Fastfood transform as W=SHGΠHB, where S, G, and B are diagonal matrices, Π is
a random permutation matrix, and H is the Walsh-Hadamard matrix. This reparameterization
requires only a total of 4d parameters, and similar as in [176], the fast Hadamard transform
enables an efficient computation of matrix-vector products.

4.3.4 Manual Architecture Design

Instead of modifying existing architectures to make them more efficient, manual architecture de-
sign is concerned with the development of new architectures that are inherently resource-efficient.
Over the past years, several design principles and building blocks for DNN architectures have

– 86 –

4.3 Structural Efficiency in Deep Neural Networks

emerged that exhibit favorable computational properties and sometimes also improve perfor-
mance.

CNN architectures are typically designed to have a transition from convolutional layers to
fully connected layers. At this transition, activations at all spatial locations of each channel
are typically used as individual input features for the following fully connected layer. Since
the number of these features is typically large, there is a memory bottleneck for storing the
parameters of the weight matrix especially in the first fully connected layer.
Lin et al. [38] introduced two concepts that have been widely adopted by subsequent works.

The first one, global average pooling, largely solves the above-mentioned memory issue at the
transition to fully connected layers. Global average pooling reduces the spatial dimensions of
each channel into a single feature by averaging over all values within a channel. This reduces the
number of features at the transition drastically, and, by having the same number of channels as
there are classes, it can also be used to completely get rid of fully connected layers. Second, they
used 1× 1 convolutions with weight kernels W ∈ R1×1×dl−1×dl which can be seen as performing
the operation of a fully connected layer over each spatial location across all channels.
These 1 × 1 convolutions have been adopted by several popular architectures [23–25] and,

due to their favorable computational properties compared to convolutions that take a spatial
neighborhood into account, later have also been exploited to improve computational efficiency.
For instance, InceptionNet [25] proposed to split standard K×K convolutions into two cheaper
convolutions: (i) a 1×1 convolution to reduce the number of channels such that (ii) a subsequent
K×K convolution is performed faster. Similar ideas are used in SqueezeNet [178] which employs
1 × 1 convolutions to reduce the number of input channels of subsequent parallel 1 × 1 and
3× 3 convolutions. In addition, SqueezeNet uses the global average pooling output of per-class
channels directly as input to the softmax in order to avoid fully connected layers that typically
consume the most memory. Furthermore, by using deep compression [144] (see Section 4.2.1),
the memory footprint was reduced to less than 0.5MB.

Szegedy et al. [39] extended the InceptionNet architecture by spatially separable convolutions
to reduce the computational complexity, i.e., aK×K convolution is split into aK×1 convolution
followed by a 1×K convolution. In MobileNet [179] depthwise separable convolutions are used
to split a standard convolution in another way: (i) a depthwise convolution and (ii) a 1 × 1
convolution. The depthwise convolution applies aK×K filter to each channel separately without
taking the other channels into account whereas the 1×1 convolution then aggregates information
across channels. Although these two cheaper convolutions together are less expressive than a
standard convolution, they can be used to trade off a small loss in prediction accuracy with a
drastic reduction in computational overhead and memory requirements.
Sandler et al. [45] extended these ideas in their MobileNetV2 to an architecture with residual

connections. A typical residual block with bottleneck structure in ResNet [23] contains a 1× 1
bottleneck convolution to reduce the number of channels, followed by a 3×3 convolution, followed
by another 1× 1 convolution to restore the original number of channels again. Contrary to that
building block, MobileNetV2 introduces an inverted bottleneck structure where the shortcut
path contains the bottleneck and the residual path performs computations in a high-dimensional
space. In particular, the residual path performs a 1 × 1 convolution to increase the number of
channels, followed by a cheap depthwise 3×3 convolution, followed by another 1×1 convolution
to reduce the number of channels again. They show that their inverted structure is more memory
efficient since the shortcut path, which needs to be kept in memory during computation of the
residual path, is considerably smaller. Furthermore, they show improved performance compared
to the standard bottleneck structure.
While it was more of a technical detail rather than a contribution on its own, AlexNet [6] used

grouped convolutions with two groups to facilitate model parallelism for training on two GPUs
with relatively low memory capacity. Instead of computing a convolution using a weight tensor
W ∈ RK×K×gdl−1×gdl , a grouped convolution splits the input into g groups of dl−1 channels that
are independently processed using weight tensors Wg ∈ RK×K×dl−1×dl . The outputs of these g

– 87 –

4 Resource-Efficient Deep Neural Networks

convolutions are then stacked again such that the same number of input and output channels
are maintained while considerably reducing the computational overhead and memory footprint.
Although this reduces the expressiveness of the convolutional layer since there is no interaction

between the different groups, Xie et al. [41] used grouped convolutions to enlarge the number of
channels of a ResNet model which resulted in accuracy gains while keeping the computational
complexity of the original ResNet model approximately the same. Zhang et al. [180] introduced
a ResNet-inspired architecture called ShuffleNet which employs 1×1 grouped convolutions since
1 × 1 convolutions have been identified as computational bottlenecks in previous works, e.g.,
see [179]. To combine the computational efficiency of grouped convolutions with the expres-
siveness of a full convolution, ShuffleNet incorporates channel shuffle operations after grouped
convolutions to partly recover the interaction between different groups.

4.3.5 Neural Architecture Search (NAS)

NAS is a recently emerging field concerned with the automatic discovery of good DNN archi-
tectures. This is achieved by designing a discrete space of possible architectures in which we
subsequently search for an architecture that optimizes some objective—typically the validation
error. By incorporating a measure of resource efficiency into this objective, this technique has
recently attracted attention for the automatic discovery of resource-efficient architectures.
The task is very challenging: On the one hand, evaluating the validation error is time-

consuming as it requires a full training run and typically only results in a noisy estimate thereof.
On the other hand, the space of architectures is typically of exponential size in the number of
layers. Hence, the space of architectures needs to be carefully designed in order to facilitate an
efficient search within that space.
The influential work of Zoph and Le [43] introduced a scheme to encode DNN architectures

of arbitrary depth as sequences of tokens which can be sampled from a controller RNN. This
controller RNN is trained with reinforcement learning to generate well performing architectures
using the validation error on a held-out validation set as a reward signal. However, the training
effort is enormous since more than 10,000 training runs are required to achieve state-of-the-art
performance on Cifar-10. This would be impractical on larger datasets such as ImageNet which
was partly solved by subsequent NAS approaches, e.g., in [181]. In this review, we highlight
methods that also consider resource efficiency constraints for NAS.
In MnasNet [44], a RNN controller is trained by also considering the latency of the sampled

DNN architecture measured on a real mobile device. They achieve performance improvements
under predefined latency constraints on a specific device. To run MnasNet on the large-scale
ImageNet and COCO datasets [182], their algorithm is run on a proxy task by only training for
five epochs, and only the most promising DNN architectures were trained using more epochs.
Wang et al. [183] determined the individual bit widths of mixed-precision quantization using

a similar reinforcement learning framework. Their controller DNN generates for each layer two
bit widths, one for the weights and one for the activations. A pre-trained full-precision DNN is
then quantized using these bit widths and fine-tuned for one epoch to obtain a reward signal
that is subsequently used to update the controller. Their method incorporates hardware-specific
constraints, such as latency and energy consumption, that must be met by the controller.
Instead of generating architectures using a controller, ProxylessNAS [184] uses a heavily over-

parameterized model where each layer contains several parallel paths, each computing a different
architectural block with its individual parameters. For each layer, probability parameters for
selecting a particular architectural block are introduced which are trained via backpropagation
using the STE. After training, the most probable path determines the selected architecture. To
favor resource-efficient architectures, a latency model is build using measurements done on a
specific real device whose predicted latencies are used as a differentiable regularizer in the cost
function. In their experiments, they show that different target devices prefer individual DNN

– 88 –

4.3 Structural Efficiency in Deep Neural Networks

architectures to obtain a low latency.
Instead of using a different path for different operations in each layer, single-path NAS [185]

combines all operations in a single shared weight superblock such that each operation uses a subset
of this superblock. A weight-magnitude-based decision using trainable threshold parameters
determines which operation should be performed, allowing for gradient-based training of both
the weight parameters and the architecture. Again, the STE is employed to backpropagate
through the threshold function.
Wu et al. [186] performed mixed-precision quantization using similar NAS concepts to those

used in [187] and [184]. They introduce gates for every layer that determine the number of
bits used for quantization, and they perform continuous stochastic optimization of probability
parameters associated with each of these gates.
Liu et al. [188] have replicated several experiments of pruning approaches (see Section 4.2)

and they observed that the typical workflow of training, pruning, and fine-tuning is often not
necessary and only the discovered sparsity structure is important. In particular, they show for
several pruning approaches that randomly initializing the weights after pruning and training
the pruned structure from scratch results in most cases in a similar performance as performing
fine-tuning after pruning. They conclude that network pruning can also be seen as a paradigm
for architecture search.
Tan and Le [42] recently proposed EfficientNet which employs NAS for finding a resource-

efficient architecture as a key component. In the first step, they perform NAS to discover a
small resource-efficient model which is much cheaper than searching for a large model directly.
In the next step, the discovered model is enlarged by a principled compound scaling approach
which simultaneously increases the number of layers, the number of channels, and the spatial
resolution. Although this approach is not targeting resource efficiency on its own, EfficientNet
achieves state-of-the-art performance on ImageNet using a relatively small model.
In Chapter 7, we show that ideas from NAS for DNNs can be successfully transferred to a

completely different model class, namely BNs. More specifically, we employ ideas from [187] and
particularly from [184] to train the parameters of the BN and its TAN structure jointly using
the same objective with gradient-based optimization techniques [189]. In [134], we also show
that this objective can be extended to a model size aware objective. This allows us to trade off
between accuracy and model size in a principled manner. These promising results suggest that
NAS techniques from the deep learning community might be applicable to a broader class of
models whose underlying structure is specified by some kind of graph.

– 89 –

Probabilistic Methods for Resource Efficiency in Machine Learning

5
Learning Discrete-Valued Neural Networks

Using Weight Distributions

Quantization is concerned with mapping real-valued quantities to a discrete set. In recent years,
much research effort has been spent on quantization techniques for DNNs to reduce their model
complexity. This chapter is devoted to DNNs with both quantized weights and activations.
By assuming that the weights of a DNN are quantized to a discrete set, the task of training

becomes a combinatorial optimization problem. However, there seems to be little hope that stan-
dard combinatorial optimization techniques will produce meaningful results. On the one hand,
the number of discrete weights in modern DNNs is huge such that enumerating all weight com-
binations is not an option. On the other hand, successful combinatorial optimization techniques
often traverse the solution space by following some carefully designed heuristic. Designing such
a heuristic is difficult since DNNs are generally difficult to interpret. Considering that a large
portion of the success of deep learning can be attributed to gradient-based learning techniques,
it is not surprising that most quantization techniques also rely on gradient-based learning.
Most of the quantization techniques discussed in Section 4.1 employ the STE to approximate

the zero gradient of piecewise constant quantization functions in a computation graph. However,
the STE—although often providing convincing empirical results—is yet to be better understood
theoretically. From a theoretical point of view, it is rather unsatisfactory that the gradient of a
function known to be exactly zero is “approximated” by something non-zero.19

In this chapter, we introduce a method to train discrete-valued DNNs by continuous optimiza-
tion of a well-defined objective. Notably, our method does not rely on the STE. For this purpose,
we introduce a discrete distribution qν(W) over the weights that is governed by continuous dis-
tribution parameters ν. Given some loss L(W;D), we define a new loss over ν as an expectation
of L(W;D) with respect to qν(W). The resulting loss is differentiable in ν and can be optimized
with conventional gradient-based learning techniques. Importantly, this approach yields a dif-
ferentiable loss irrespective of whether the employed activation function hl is differentiable. We
utilize this to also train DNNs using the sign activation function. After the distribution qν(W)
has been trained, we select either its most probable weights or some generated weight samples
as our efficient discrete-valued DNNs. The whole procedure is outlined in Figure 5.1(a). Our
method was originally inspired by the Bayesian variational inference framework for DNNs, and
we show that the mean field variational inference framework is closely related to our method.
Compared to the most relevant previous works of Shayer et al. [137] and Peters and Welling

[138], our work provides several extensions. These methods use a parameterization of qν(W)
that is tailored to binary and ternary weights and does not easily generalize to more than
three weights. The same holds true for their method to initialize qν(W) which is coupled to
their parameterization. We introduce simpler parameterization and initialization schemes that
naturally generalize to arbitrary discrete weights. Furthermore, we introduce a distribution-
aware approximation for propagating distributions through max pooling. This is in contrast to
the method of [138] where the distribution is only indirectly taken into account. In contrast to

19 We stick to the vast literature that uses the term “approximate” in this context, but we want to highlight
that this term is somewhat improperly used. In most meaningful scenarios, one typically uses approximation
techniques to estimate values that are known to exist but are, for some reason, difficult to compute exactly.

– 91 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

several other works that require real-valued weights in the input and/or output layers [118, 130,
137], we employ discrete weights in all layers and still achieve state-of-the-art performance.

We empirically show the effectiveness of our method in an extensive experimental evaluation.
Our method achieves state-of-the-art performance on several datasets. We show that using more
discrete weight values typically results in higher prediction accuracy. Consequently, our method
provides an effective means of trading off between computational requirements and accuracy.
We conducted an extensive ablation study to gain insights into individual components of the
proposed method. In particular, our experiments show that our parameterization facilitates
training and results in higher prediction accuracy. We show that it is important for the max
pooling approximation to take distributional properties more directly into account. We also
conducted ensemble experiments by averaging the predictions of several models sampled from
qν(W). We find that only few samples are required to achieve a higher accuracy than the most
probable model; therefore, providing us with another tool to trade off between computational
requirements and accuracy.
This chapter is largely based on our paper “Training Discrete-Valued Neural Networks with

Sign Activations Using Weight Distributions” that was presented at the ECML PKDD confer-
ence in 2019 [139]. The chapter extends the ECML paper mainly by additional experiments and
an improved experimental setup. Each experiment is now conducted ten times (instead of five
times), each using a different pre-trained model (instead of using the same pre-trained model
five times). In our most notable additional experiments, we compare different max pooling
approximations, we perform experiments using different training methods (e.g., using the prob-
abilistic forward pass), and we perform model averaging experiments. Interestingly, we find that
pre-trained models with ReLU activation yield substantially higher accuracies than pre-trained
models using the tanh function. This is somewhat surprising since the discrete-valued DNNs
employ the sign activation function which is closer in shape to the tanh function.
This chapter is outlined as follows. Section 5.1 introduces discrete-valued DNNs and the

probabilistic loss with corresponding optimization techniques. Details about the model and
individual building blocks are provided in Section 5.2. Our extensive experimental evaluation is
presented in Section 5.3 and we discuss our findings in Section 5.4.

5.1 Training with Discrete Weight Distributions
We begin by defining the main subject of this chapter, namely discrete-valued DNNs. A discrete-
valued DNN is a DNN where the weights, the activations20, or both are from a discrete set D. For
the activations, we consider binary values D2 = {−1, 1} which are conveniently obtained by the
sign activation function. For the weights, let DQ = {v1, . . . , vQ} be a discrete set of weight values
with v1 < . . . < vQ. We consider discrete weights withQ ∈ {3, 4, 5}, i.e., ternary, quaternary, and
quinary weights. The choice of the particular weights vi is arbitrary and we restrict ourselves
to evenly spaced weights with constant ∆v = vi+1 − vi that are symmetric around zero. In
particular, we have D3 = {−1, 0, 1}, D4 = {−1,−1

3 ,
1
3 , 1}, and D5 = {−1,−1

2 , 0,
1
2 , 1}. Note

that the scale of the discrete weights is irrelevant as either we use the sign function that stays
unaffected or batch normalization [34] compensates for any change in scale.

5.1.1 The Probabilistic Loss
To avoid solving an intractable combinatorial optimization problem over the discrete weights
w ∈ DQ, we first introduce a discrete weight distribution qν(W) governed by a set of continuous
parameters ν. We adopt the common mean field assumption such that individual weights are
20 We stick to the vast literature where activation quantization refers to quantization of the layer outputs xl =
hl(al) after the activation function hl has been applied.

– 92 –

5.1 Training with Discrete Weight Distributions

x1 x2

Σ Σ Σ

y

Probabilistic

x1 x2

Σ Σ Σ

y

Discrete weights

00 −1−1 11 11 −1−1 00

11 −1−1 00

argmax

sample

(a) overview

x1

x2

xdl−1

∑

(b) central limit approximation

Figure 5.1: (a) Overview of our method. We train distributions over discrete weights (left). After training, a
discrete-valued DNN (right) is obtained by selecting the most probable weights or sampling from
these distributions. (b) The expectation in (5.1) is approximated by invoking a central limit ap-
proximation at the neurons and propagating the resulting Gaussians through the sign activations.
The binary activations are then either sampled using the Gumbel-softmax reparameterization or
further propagated through the DNN using the probabilistic forward pass.

independent under qν(W). This implies that qν(W) factorizes into a product of factors qw(w),
one for each weight w ∈W. Each of these factors is a pmf over Q values governed by variational
parameters νw. We elaborate more on the particular parameterization of the pmf over discrete
weights in Section 5.2.4.
Let L(W,D) be an arbitrary loss function defined over continuous weights W. The discrete

weight distribution qν(W) allows us to formulate a probabilistic loss as

Lprob(ν;D) = EW∼qν(W)[L(W;D)] + λR(ν), (5.1)

where R(ν) is a differentiable regularizer over the distribution parameters ν. This loss exhibits
certain favorable properties. Most importantly, Lprob is differentiable with respect to the dis-
tribution parameters ν such that we can (in principle) perform gradient-based learning. To see
why this holds, note that the expectation in (5.1) is essentially a sum over exponentially many
terms

EW∼qν(W)[L(W;D)] =
∑

W∈D|W|
qν(W)L(W;D). (5.2)

In (5.2), the weights W do not appear as free variables such that the term L(W;D) can be
regarded as a constant. Therefore, the probabilistic loss Lprob can be seen as a weighted sum
over exponentially many terms qν(W) where the (constant) weights are specified by L(W;D).
Consequently, Lprob is differentiable whenever qν(W) is differentiable. Note that this argument
neither requires any explicit assumptions on L(W;D) nor on the structure of the DNN. The
argument holds regardless of the selected activation function hl and, in particular, the loss
function remains differentiable even for the sign activation function. In the remainder of this
chapter, we restrict ourselves to the probabilistic loss (5.1) for L(W;D) being the cross-entropy
loss (2.8).
The probabilistic loss Lprob exhibits another favorable property if we only consider the expec-

tation (5.2) and ignore the regularizer R(ν) for the moment. An optimal distribution q∗ν(W)
of (5.2) is obtained by assigning the whole mass to some discrete weights W∗ that maximize
L(W,D). This can be easily seen since moving any positive mass from an optimal solution
W∗ of L(W;D) to any suboptimal W increases (5.2). This also implies that the mean field
assumption is sufficient in the sense that an optimal solution of (5.2) can be obtained. However,
in practice, the regularizer R(ν) of Lprob is still required for similar reasons as it is necessary for

– 93 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

continuous DNNs. As we will see, in our framework an entropy-increasing regularizer is useful
to obtain a better Gaussian approximation when the central limit theorem is invoked.
When the optimization procedure finishes and a suitable distribution qν(W) has been ob-

tained, it remains to select a proper discrete-valued DNN. We propose to either take the most
probable weights argmaxW qν(W) or to generate samples W ∼ qν(W). Note that whenever we
mention discrete weight training, we actually refer to the training of the discrete distribution
qν(W) from which we subsequently infer the discrete weights. Before we discuss how to optimize
(5.1) using gradient-based techniques, we briefly highlight some similarities between our method
and Bayesian DNNs using variational inference as discussed in Section 3.4.

5.1.2 Relation to Variational Inference

The presented work is closely related to the Bayesian variational inference framework. Recall
from Chapter 3 that, for a Bayesian treatment of DNNs, we assume a prior distribution p(W)
over the weights and interpret the softmax output of the DNN as likelihood p(D|W) to obtain a
posterior p(W |D) ∝ p(D|W)p(W) over the weights. As the induced posterior p(W|D) is gen-
erally intractable, the aim of variational inference is to approximate it by a simpler distribution
qν(W) by minimizing the negative evidence lower bound

Lelbo(ν;D) = −EW∼qν(W)[log p(D|W)] +DKL(qν(W) ||p(W)). (5.3)

Equation (5.3) is proportional to (5.1) for L(W;D) being the cross-entropy loss (2.8), R(ν)
being the KL divergence, and λ = 1/N . The main difference of our work to variational inference
is our motivation to use distributions in order to obtain a gradient-based learning scheme for
discrete-valued DNNs with discrete activation functions. Variational inference is typically used
to approximate expectations over the posterior p(W |D) and to obtain well calibrated uncertainty
estimates for DNN predictions.

5.1.3 Optimizing the Probabilistic Loss

We assume that the regularizer R(ν) is given in closed form and that we can evaluate its
gradient using backpropagation. It remains to compute the gradient of the intractable expected
loss (5.2). To do so, we employ two different techniques for variational inference in Bayesian
DNNs, namely the local reparameterization trick and the probabilistic forward pass. Note that
both of these methods have already been discussed in detail; see Section 3.4.4 for the (local)
reparameterization trick and Sections 3.3.2 and 3.4.1 for the probabilistic forward pass. In
the following, we briefly recap the basic ideas of these methods and highlight the necessary
adaptations required for discrete-valued DNNs. Figure 5.1(b) provides an overview of the basic
concepts of both methods.
The first method is based on the local reparameterization trick and computes Monte Carlo

estimates of the gradient in order to perform SGD. Let xl−1 be the deterministic inputs of layer
l and qν(Wl) be a distribution over the weights in layer l. By appealing to the central limit
theorem, the induced marginal distributions over the activations q(ali) can be approximated by
a Gaussian N (µali , σ

2
ali

) where

µali
=
∑
k

E[wli,k]xl−1
k and σ2

ali
=
∑
k

V[wli,k](xl−1
k)2. (5.4)

Most importantly, the Gaussian approximation is justified even for discrete weight distributions
qν(W). The local reparameterization trick is typically applied to sample from the induced ac-
tivation marginals with parameters (5.4). This is, however, not applicable in our case since we

– 94 –

5.1 Training with Discrete Weight Distributions

subsequently apply the sign activation function which prevents the gradient flow during back-
propagation. Therefore, we propagate the Gaussian approximation through the sign activation
function and apply the reparameterization trick afterwards. The resulting binary distribution
after the sign function is given by

q(X l
i = 1) = Φ(µali/σali), (5.5)

where Φ denotes the cdf of a standard normal distribution. The binary distributions q(xl) vary
smoothly as a function of the parameters (5.4) and, therefore, backpropagation remains possible.
Since the reparameterization trick is restricted to continuous distributions, we cannot directly

apply it to sample from q(xl). Therefore, we apply the Gumbel-softmax approximation [100,
101] to sample from q(xl) (see Section 3.4.5). Given the binary distribution (5.5), two samples
ε1, ε2 ∼ Gumbel(0, 1) generated according to (3.109), and the Gumbel-softmax temperature τg,
an approximate binary sample is obtained as

xli = tanh
(

log q(X l
i = 1) + ε1 − log q(X l

i = −1)− ε2
2τg

)
. (5.6)

We refer to Appendix B.8 for a derivation of (5.6). Note that one can apply the straight-through
Gumbel-softmax estimator [100] to obtain actual binary values xli. In this case, (5.6) serves as
a STE during backpropagation. In our experiments (see Section 5.3.3), we show that this does
not yield improved results.
These steps are iterated up to the output layer where we eventually obtain a Gaussian approx-

imation q(aLi) over the output activations. The loss function is finally evaluated by generating
a sample from q(aL) using the reparameterization trick.
The second method, the probabilistic forward pass, is equivalent to the previous method up to

the point where the binary activations are sampled from q(xl). Instead of sampling from q(xl),
the probabilistic forward pass computes the Gaussian activation marginals q(ali) based on an
input distribution q(xl−1). Assuming independence of the inputs xl−1 and the weights Wl, the
corresponding expressions are given by

µali
=
∑
k

E[wli,k]E[xl−1
k] (5.7)

and

σ2
ali

=
∑
k

E[wli,k]2V[xl−1
k] + V[wli,k]E[xl−1

k]2 + V[wli,k]V[xl−1
k]. (5.8)

Note that for the first layer where the inputs are deterministic, these expressions reduce to (5.4).
To obtain a sampling-free procedure, the loss function in the output layer is approximated by
the second-order approximation (3.87) for the cross-entropy loss (i.e., for the negative of (3.90)).
For both discussed methods, we are required to pass the Gaussian activation distribution

q(al) through the sign function. So far, we have ignored intermediate building blocks that
commonly appear before the sign activation function. In particular, many architectures employ
batch normalization and pooling operations, and there might be building blocks that are yet
to be discovered in the future. It is often not straightforward how such building blocks can be
generalized to distribution-valued inputs. We will discuss generalizations of batch normalization
and max pooling to Gaussian distributions in Section 5.2.2 and Section 5.2.3, respectively. Note
that such generalization are not required for the local reparameterization trick in combination
with traditional continuous activation functions such as ReLU and tanh.
To cover another aspect, we want to mention that, under certain conditions, the activation

distribution q(al) can be computed exactly. Consider a sum over K independent discrete ran-

– 95 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

dom variables Z1, . . . , ZK . If the random variables Zk take values from arbitrary discrete sets,
computing the pmf of their sum requires exponential time since the sum can take exponentially
many values. However, if the random variables take values from the same evenly spaced set, the
pmf of their sum can be computed in subexponential time. This is best illustrated by considering
two independent random variables Z1 and Z2 over the integers. Clearly their sum will also be
an integer and we can express its pmf by a convolution as

p(Z1 + Z2 = z) =
∞∑

k=−∞
p(Z1 = k)p(Z2 = z − k). (5.9)

For finite discrete random variables Z1 and Z2, the sum (5.9) simplifies to a finite sum that can
be computed in subexponential time. Note that we can apply (5.9) repeatedly for sums over
several independent discrete random variables. For discrete-valued DNNs with sign activations,
the summands wli,kxlk of an activation ali are from an evenly spaced discrete set such that, in
principle, the marginal q(ali) can be computed exactly in subexponential time. However, due to
efficiency reasons, the exact computation is not used in practice.
We conclude this section with a brief justification of the expected loss (5.2). Since our goal

is to obtain a single discrete-valued DNN achieving a good performance, the question arises
whether we can expect the most probable discrete weights to perform well if we perform well in
expectation. For both methods, the local reparameterization trick and the probabilistic forward
pass, the loss only depends on the means E[w] and the variances V[w]. Using discrete weights
with v1 = −1 and vQ = 1, we can represent any mean in the interval [−1, 1]. However, we can
only achieve low variance if the mean E[w] is close to a weight in D. Therefore, our approach
can be seen as a particular way of parameterizing means E[w] and constrained variances V[w]
through the probabilities qν(W). Since we require small variances to obtain a small expected
loss—in fact a point mass is optimal for the expected log-likelihood (5.2) as discussed above—
optimization favors means E[w] that are close to values in D. Consequently, also the most
probable weights in qν(W) are expected to perform well.

5.2 Model Details
In this section, we introduce details about our model and the adaptations of typical building
blocks required for compatibility with our method. We start with the basic layout of our DNNs.
Then we proceed with adaptations required for batch normalization and max pooling. Finally,
we introduce our parameterization and initialization schemes for the weight distributions qν(W).

5.2.1 Model Layout

The basic convolutional block for the sign activation function is depicted in Figure 5.2(a). We
typically start with dropout, followed by a convolution. Motivated by Rastegari et al. [118], we
perform the pooling operation (if present) right after the convolution to avoid information loss.
Afterwards we perform batch normalization as described in Section 5.2.2, followed by comput-
ing the pmf after the sign function. Unless the probabilistic forward pass is used, we finally
perform the local reparameterization trick using the Gumbel-softmax approximation. For con-
tinuous activation functions (ReLU or tanh; see Figure 5.2(b)), a Gaussian reparameterization
is performed right after the convolution.
We do not perform batch normalization in the final layer. Instead we introduce a real-valued

bias and divide the output activations by the square root of the number of incoming neurons.
This normalization step counteracts the relatively large values of the discrete weights and the
binary inputs from the previous layer. We found this to be crucial for training as otherwise

– 96 –

5.2 Model Details

Dropout Convolution Max pooling Batch norm. Sign
Gumbel
reparam.

(a) discrete activation function

Dropout Convolution
Gaussian
reparam.

Max pooling Batch norm.
ReLU

(or tanh)

(b) continuous activation function

Figure 5.2: Convolutional blocks. Max pooling is not always present. For the probabilistic forward pass, the
reparameterization block is omitted.

the output softmax would be too saturated in most cases. Moreover, we found dropout in our
experiments to be particularly helpful as it improved performance considerably. Dropout was
performed by randomly setting both the neuron’s mean and its variance to zero in order to
completely remove its influence.

5.2.2 Batch Normalization for Gaussian Distributions
As briefly mentioned in Section 5.1.3, we are required to generalize batch normalization to
distributions. Batch normalization is particularly important when using sign activations to avoid
excessive information loss [118]. We use the method proposed in [138] to normalize distributions
to approximately have zero mean and unit variance. The mini-batch statistics for NB samples
are computed as

µbn,i = 1
NB

NB∑
n=1

µan,i and σ2
bn,i = 1

NB − 1

NB∑
n=1

σ2
an,i + (µan,i − µbn,i)2. (5.10)

Subsequently, batch normalization is computed as

µai ←
µai − µbn,i
σbn,i

· γbn,i + βbn,i and σ2
ai ←

σ2
ai

σ2
bn,i
· γ2

bn,i, (5.11)

where βbn,i and γbn,i are the learnable batch normalization parameters.
For predictions at test-time, batch normalization requires us to compute these statistics over

the entire training set. Since this is typically too expensive, it is common practice to estimate
these statistics by an exponential moving average over the mini-batches during training, i.e.,

µnew
tr,i ← ξbnµbn,i + (1− ξbn)µold

tr,i, (5.12)

where ξbn ∈ (0, 1) is a hyperparameter, and we proceed similarly for σtr,i. However, as already
noted in [138], the statistics for the most probable discrete-valued DNN might differ significantly
from those observed during training. Therefore, it is necessary to compute the batch statistics
separately using the most probable discrete-valued DNN. This is accomplished by computing an
exponential moving average over 100 random mini-batches of the training set after each epoch
and right before evaluating the validation and test errors. In our experiments (see Section 5.3.7),
we observed stronger fluctuations of the test errors and inferior overall performance when the
statistics are computed during training according to (5.12). The computational overhead for
this re-estimation was negligible compared to the overall training time. Note that batch nor-
malization, although introducing real-valued variables, requires only a marginal computational

– 97 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

≈ max

≈ max

≈ max

Figure 5.3: Max pooling approximation. In the first stage, the maximum of the two upper and the two lower
Gaussians are approximated. In the next stage, the overall maximum is approximated.

overhead at test-time [190].

5.2.3 Max Pooling for Gaussian Distributions

Many CNN architectures involve max pooling operations where feature maps are downscaled
by only passing the maximum of several spatially neighboring activations to the next layer.
To generalize max pooling to distributions, we approximate the maximum of two Gaussians by
another Gaussian using moment matching. Let µ1, µ2 and σ2

1, σ2
2 be the means and the variances

of two independent Gaussians, respectively. According to [191], the mean µmax and the variance
σ2

max of the maximum of these Gaussians are given by

µmax = µ1Φ(β) + µ2Φ(−β) + αφ(β) and (5.13)
σ2

max = (σ2
1 + µ2

1)Φ(β) + (σ2
2 + µ2

2)Φ(−β) + (µ1 + µ2)αφ(β)− µ2
max, (5.14)

where φ and Φ are the pdf and the cdf of a standard normal distribution, respectively, and

α =
√
σ2

1 + σ2
2 and β = µ1 − µ2

α
. (5.15)

This scheme can be iteratively applied to approximate the maximum of several Gaussians. As
long as the number of Gaussians is relatively small—CNNs typically involve 2×2 max pooling—
this scheme results in a fairly efficient approximation for max pooling. Our scheme is illustrated
in Figure 5.3. We first approximate the maximum of the two upper and the two lower activations
by a Gaussian, and then we approximate the maximum of these two Gaussians by another
Gaussian.
This is in contrast to the max pooling approximation proposed by Peters and Welling [138].

Their method generates samples from the Gaussian inputs and selects the mean and the variance
of the input that generated the largest sample. Although the samples are generated from the
input distributions, the properties of these distributions are effectively ignored afterwards. To
see this more clearly, assume that we want to approximate the maximum over several standard
normal distributions. In this case, the true mean grows with the number of Gaussians, but their
method outputs a standard normal distribution irrespective of the number of inputs.
A more sophisticated approach has been proposed by Shekhovtsov and Flach [79]. In a first

step, their method approximates the distribution of the argmax of a set of Gaussians. They
present two versions for the argmax approximation, i.e., a quadratic-time and a faster linear-
time approximation. Based on this approximation, their method subsequently approximates the
mean and the variance of the maximum itself.

– 98 –

5.2 Model Details

In our experiments (see Section 5.3.4), we also explore the possibility of computing a Monte
Carlo estimate of the mean and the variance of the maximum. For this purpose, several samples
of the maximum are generated by sampling multiple times from the Gaussian inputs using the
reparameterization trick. Subsequently, the empirical mean and variance over these maxima is
computed. Note that this approach requires at least two samples to obtain an unbiased non-zero
estimate of the variance, and the approximation quality grows with the number of samples.

5.2.4 Parameterization and Initialization of Weight Distributions
Shayer et al. [137] introduced a parameterization for ternary distributions based on two prob-
abilities, qw(W = 0) and qw(W = 1 |W 6= 0), which is not easily generalizable to distributions
over more than three weights. In this work, we parameterize distributions over Q values using
unconstrained unnormalized log-probabilities (logits) νw,i for i ∈ {1, . . . , Q}. The normalized
probabilities qw(w) can be recovered by applying the softmax function to the logits νw, i.e.,

qw(W = vi) = softmaxi(νw). (5.16)

This straightforward parameterization allows us to select the ith weight by setting νw,i > νw,i′

for i′ 6= i. Due to the sum-to-one constraint of probabilities, we can reduce the number of
parameters to Q− 1 by fixing an arbitrary logit, e.g., νw,1 = 0. However, we refrain to do so as
it is more natural to increase a probability explicitly by increasing its corresponding logit rather
than indirectly by reducing all other logits.
Moreover, Shayer et al. [137] introduced an initialization method for the distribution param-

eters ν by matching the mean E[w] to the real-valued weights w̃ of a pre-trained network. We
note that matching the mean E[w] = w̃ is non-trivial since it is an underconstrained problem
for Q ≥ 3. In our experiments (see Section 5.3.5), we found a proper initialization scheme to
be crucial since for randomly initialized logits one usually gets stuck in a bad local minimum.
However, their initialization method also does not generalize easily to more than three weights,
especially since it is coupled to their parameterization.

Therefore, we propose to use the following initialization scheme to approximately match the
means which we found to be at least as effective as Shayer et al.’s approach for ternary weights
(see Section 5.3.5). Let v1 < . . . < vQ be the set of discrete weight values. Furthermore, let qmin
be a minimum probability that is required to avoid zero probabilities. The maximal probability
is then given by qmax = 1 − (Q − 1)qmin and we define ∆q = qmax − qmin. Given a real-valued
weight w̃, we initialize the parameters νw to obtain

qw(W = vi) =


qmin + ∆q

w̃−vi−1
vi−vi−1

vi−1 < w̃ ≤ vi
qmin + ∆q

vi+1−w̃
vi+1−vi vi < w̃ ≤ vi+1

qmax (i = 1 ∧ w̃ < v1) ∨ (i = Q ∧ w̃ > vQ)
qmin otherwise.

(5.17)

Figure 5.4(a) illustrates this scheme for quinary weights. In practice, weight magnitudes might
differ significantly across layers. Shayer et al. [137] addressed this by dividing the pre-trained
weights w̃ in each layer by their layerwise standard deviation before applying (5.17). We propose
the following scheme which distributes probabilities more uniformly across the discrete weight
values in order to benefit from the increased expressiveness when using a larger Q. Let

Φl
e(w) = 1/|Wl|

∑
w̃∈Wl

I[w̃ ≤ w] (5.18)

be the empirical cdf of the weights in layer l. To achieve scale invariance, we compute w̃l ←
Φl
e(w̃l) such that the weights w̃l cover the unit interval with equal spacing while preserving

– 99 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

−1 −0.5 0 0.5 1
qmin

0.2

0.4

0.6

0.8

qmax

w̃

q w
(w

) qw(W = −1)

qw(W = − 1
2)

qw(W = 0)

qw(W = 1
2)

qw(W = 1)

(a)

1 50 100 150 200 250 300

10

15

20

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

] Random init. (w̃ ∼ N (0, 1))

Random init. (w̃ ∼ U([−1, 1]))

Pre-trained (Shayer init. [137])

Pre-trained (our init.)

(b)

Figure 5.4: (a) Our initialization method for quinary weight distributions qw(w) based on pre-trained real-
valued weights w̃. (b) Test classification error [%] over number of epochs (averaged over ten runs)
on Cifar-10 for ternary weights using different initialization methods for qν(W). For randomly
initialized qν(W), we sampled real-valued weights w̃ either from N (0, 1) or from U([−1, 1]) before
applying the method illustrated in (a) for ternary weights.

the relative order of the weights. Then we shift and scale the weights w̃ to cover the interval
[v1−∆v/2, vQ + ∆v/2]. Finally, the probabilities qw(w) are initialized according to (5.17). This
ensures that each discrete weight value vi is initially selected equally often as the most probable
weight in qw(w). We propose to use this scheme for the positive and the negative weights
separately such that the signs of the weights are preserved.

5.3 Experiments

We performed classification experiments using the following general setup (dataset dependent
settings are provided in Section 5.3.1). We optimized the probabilistic loss Lprob (5.1) for the
cross-entropy loss LCE (2.8) using Adam [11], and we report the test classification error of
the epoch resulting in the best validation classification error. All experiments employ the local
reparameterization trick using the Gumbel-softmax approximation, except those in Section 5.3.3
where we compare with other methods. We selected the regularizer R(ν) to be the squared `2-
norm over the logits [137] and set λ = 10−10. Penalizing large logits can be seen as enforcing
a uniform pmf qν(W) and, therefore, increasing entropy and variance. As stated in [137], this
rather helps to obtain better Gaussian approximations using the central limit theorem rather
than to reduce overfitting. After each gradient update, we clip the logits to the range [−5, 5].
We set the initial learning rate to 10−2 for the logits and to 10−3 for all other parameters (batch
normalization, bias in the final layer). The learning rate is reduced by a factor of αlr after every
τlr epochs, where τlr is a dataset dependent parameter that can be found in Section 5.3.1. We
selected the Gumbel-softmax temperature τg = 1 and the exponential moving average parameter
of batch normalization ξbn = 0.1. For batch normalization, the activation statistics of the
training set were estimated after each epoch as an exponential moving average over 100 mini-
batches using the most probable discrete-valued DNN. The DNN architectures, the number of
epochs, the mini-batch size, and the dropout rates are dataset dependent hyperparameters that
are provided in Section 5.3.1.
The discrete-valued DNNs were initialized with pre-trained real-valued models for qmax = 0.95

using the method described in Section 5.2.4. Pre-training was performed for DNNs with both

– 100 –

5.3 Experiments

ReLU tanh
Dataset #epochs learning rate αlr τlr λwd #epochs learning rate αlr τlr λwd

MNIST (PI) 600 3 · 10−4 0.1 150 10−5 1,000 10−3 0.5 150 10−4

MNIST 300 3 · 10−3 0.1 150 10−6 600 3 · 10−3 0.9885 1 10−6

Cifar-10 300 10−4 0.1 100 10−3 300 10−3 0.1 100 10−4

Cifar-100 300 3 · 10−4 0.1 100 10−3 600 3 · 10−4 0.4 100 10−3

SVHN 300 10−3 0.1 100 10−5 300 10−3 0.1 100 10−4

Table 5.1: Dataset specific parameters used for real-valued pre-training.

ReLU and tanh activation functions. We applied weight decay regularization (i.e., a squared `2-
norm penalty on the weights) with dataset dependent trade-off parameter λwd, and we selected
ξbn = 0.01. For pre-training, the training set statistics for batch normalization were estimated
by an exponential moving average during training.

Each experiment was conducted ten times and we report the average test errors and standard
deviations over these ten runs. To be more precise, we pre-trained ten real-valued DNNs and
always selected the model of the epoch achieving the best validation error to initialize qν(W).
For each of these ten pre-trained models, a single discrete-valued DNN was trained. Whenever
we report results for real-valued DNNs, these results correspond to the pre-trained models.
Unless stated otherwise, all results for discrete-valued DNNs are reported for the most probable
model from qν(W).

5.3.1 Dataset Setups

This section provides the experimental settings that are specific to the individual datasets.
For a detailed description of the datasets we refer to Appendix A. Furthermore, the following
experimental setups are specific to the training of the discrete weight distributions qν(W). The
settings specific to real-valued pre-training are summarized in Table 5.1. Note that real-valued
pre-training and training of the weight distributions were performed using the same batch sizes
and dropout rates.

MNIST (PI): The permutation-invariant setting of the MNIST dataset (see Appendix A.1)
where each pixel is treated as independent feature. In particular, we are not allowed to take
pixel locality into account, i.e., we do not use a CNN. For this setting we use the fully connected
architecture

FC1200− FC1200− FC10,

where FC1200 denotes a fully connected layer with 1,200 output neurons. We trained for 500
epochs using mini-batches of 100 samples with τlr = 100 and αlr = 0.5. We used dropout
probabilities (0.2, 0.4, 0.4) where the first entry corresponds to the input layer and the following
entries correspond to the subsequent layers.

MNIST: The unconstrained setting of the MNIST dataset where we exploit the image struc-
ture. We use CNNs with the architecture

32C5− P2− 64C5− P2− FC512− FC10,

where 32C5 denotes that 5×5 filter kernels are applied and 32 output feature maps are generated,
and P2 denotes that 2×2 max pooling is applied. We trained for 500 epochs using mini-batches
of 100 samples with τlr = 100 and αlr = 0.5. We used dropout probabilities (0, 0.2, 0.3, 0).

– 101 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

Dataset Real+ReLU Ternary+Sign Quaternary+Sign Quinary+Sign
MNIST (PI) 0.961 ± 0.041 1.235 ± 0.064 1.221 ± 0.052 1.207 ± 0.050
MNIST 0.474 ± 0.049 0.571 ± 0.053 0.566 ± 0.039 0.550 ± 0.038
Cifar-10 6.114 ± 0.250 8.532 ± 0.172 8.239 ± 0.135 8.168 ± 0.175
Cifar-100 24.528 ± 0.315 30.226 ± 0.277 29.816 ± 0.277 29.563 ± 0.313
SVHN 1.829 ± 0.062 2.533 ± 0.064 2.535 ± 0.053 2.522 ± 0.063

Table 5.2: Classification errors [%] for various DNN settings. We report means and standard deviations
over ten experiments. Real+ReLU is the baseline that was used to initialize the discrete DNNs.

Dataset Real+Tanh Ternary+Sign Quaternary+Sign Quinary+Sign
MNIST (PI) 1.021 ± 0.049 1.372 ± 0.031 1.328 ± 0.068 1.306 ± 0.061
MNIST 0.585 ± 0.044 0.612 ± 0.038 0.598 ± 0.048 0.616 ± 0.035
Cifar-10 7.906 ± 0.157 9.491 ± 0.195 9.413 ± 0.154 9.234 ± 0.183
Cifar-100 30.384 ± 0.246 32.848 ± 0.206 32.745 ± 0.182 32.451 ± 0.257
SVHN 2.154 ± 0.038 2.639 ± 0.083 2.591 ± 0.075 2.626 ± 0.073

Table 5.3: Classification errors [%] for various DNN settings. We report means and standard deviations
over ten experiments. Real+Tanh is the baseline that was used to initialize the discrete DNNs.

Cifar-10 and Cifar-100: Since both datasets, Cifar-10 and Cifar-100 (see Appendix A.3),
are very similar and they mainly differ in the number of object categories, we use the same
experimental setup and pre-processing steps for both datasets. For training, we perform data
augmentation by shifting the images randomly by up to four pixels in each direction, and we
randomly flip images along the vertical axis similar as in [23, 137]. We use the VGG-inspired
[37] CNN architecture

2×128C3− P2− 2×256C3− P2− 2×512C3− P2− FC1024− FC10/100,

where 2×128C3 denotes two consecutive 128C3 blocks. We trained for 300 epochs using mini-
batches of 100 samples with τlr = 100 and αlr = 0.1. We used dropout probabilities (0, 0.2, 0.2,
0.3, 0.3, 0.3, 0.4, 0).

SVHN: Since the SVHN dataset is quite large (see Appendix A.4), we do not perform data
augmentation. We use the same CNN architecture as for the Cifar datasets except that we use
only half the number of feature maps in each convolutional layer, i.e.,

2×64C3− P2− 2×128C3− P2− 2×256C3− P2− FC1024− FC10.

We trained for 100 epochs using mini-batches of 250 samples with τlr = 35 and αlr = 0.1. We
used the same dropout probabilities as for the Cifar datasets.

5.3.2 Classification Results
We start by investigating the influence of the activation function used for pre-training (ReLU
and tanh) on the discrete DNNs. The corresponding test errors for ReLU pre-training and
tanh pre-training are shown in Table 5.2 and Table 5.3, respectively. The pre-trained real-
valued models using the ReLU activation clearly outperform their tanh counterpart. This also
translates to better results when using the ReLU models to initialize the discrete-valued models
using sign activations. This is rather surprising since the tanh activation provides a much better
approximation to the sign function than the ReLU. We observed this clear advantage of the
ReLU activation over tanh in every experiment and, therefore, we mostly focus on results for
ReLU in the upcoming sections.
Next, we compare the results when using different types of discrete weights, namely ternary,

quaternary, and quinary weights. Using ReLU pre-training, the results improve on all datasets

– 102 –

5.3 Experiments

Dataset Ternary+ReLU Quaternary+ReLU Quinary+ReLU Ternary+Sign Quaternary+Sign Quinary+Sign
MNIST (PI) 1.035 ± 0.031 1.011 ± 0.047 1.022 ± 0.049 1.181 ± 0.041 1.194 ± 0.044 1.181 ± 0.053
MNIST 0.460 ± 0.034 0.485 ± 0.026 0.459 ± 0.036 0.577 ± 0.049 0.559 ± 0.031 0.556 ± 0.045
Cifar-10 6.170 ± 0.207 6.028 ± 0.152 5.873 ± 0.156 8.403 ± 0.097 8.116 ± 0.150 8.104 ± 0.197
Cifar-100 25.221 ± 0.221 25.088 ± 0.302 24.861 ± 0.276 30.281 ± 0.418 29.966 ± 0.357 29.787 ± 0.204
SVHN 1.865 ± 0.052 1.876 ± 0.055 1.858 ± 0.045 2.506 ± 0.043 2.488 ± 0.040 2.502 ± 0.069

Table 5.4: Classification errors [%] for various DNN settings. We report means and standard deviations
over ten experiments. The models in the first three columns were initialized with Real+ReLU
from Table 5.2. The models in the last three columns were initialized with the corresponding
discrete weight model with ReLU activation.

Dataset Ternary+Tanh Quaternary+Tanh Quinary+Tanh Ternary+Sign Quaternary+Sign Quinary+Sign
MNIST (PI) 1.287 ± 0.061 1.249 ± 0.062 1.212 ± 0.067 1.292 ± 0.086 1.251 ± 0.090 1.240 ± 0.054
MNIST 0.578 ± 0.043 0.587 ± 0.024 0.568 ± 0.049 0.624 ± 0.058 0.615 ± 0.064 0.611 ± 0.062
Cifar-10 7.950 ± 0.165 7.826 ± 0.137 7.742 ± 0.133 9.175 ± 0.169 8.962 ± 0.178 8.866 ± 0.156
Cifar-100 29.572 ± 0.183 29.429 ± 0.280 29.117 ± 0.278 32.756 ± 0.394 32.630 ± 0.387 32.279 ± 0.305
SVHN 2.276 ± 0.054 2.247 ± 0.056 2.260 ± 0.051 2.561 ± 0.060 2.518 ± 0.067 2.517 ± 0.070

Table 5.5: Classification errors [%] for various DNN settings. We report means and standard deviations
over ten experiments. The models in the first three columns were initialized with Real+Tanh from
Table 5.3. The models in the last three columns were initialized with the corresponding discrete
weight model with tanh activation.

when more discrete weight values are used, except on SVHN where results are similar for
all discrete weight types. Using tanh pre-training, the results improve on the three datasets
MNIST (PI), Cifar-10, and Cifar-100; on the remaining two datasets MNIST and SVHN the
test error differences are marginal. Figure 5.5(a) shows some exemplary learning curves for the
three discrete weight types on Cifar-100. These results show that—if model expressiveness is an
issue—we can expect the accuracy to improve as more discrete weight values are used. Note that
these results also indicate the effectiveness of the proposed initialization and parameterization
methods.
In the next experiment, we performed a two-stage procedure using an intermediate training

run where we only discretized the weights and kept the real-valued activation functions. In a
subsequent training run, we used these DNNs to initialize the training with discrete weights and
sign activation. For both of these training runs, we applied the same experimental setup as used
for standard discrete weight training with sign activation from above.
The results for ReLU and tanh activations of these experiments are shown in Table 5.4 and

Table 5.5, respectively. For both activation functions, the accuracy degradation is less severe
when only the weights are quantized and the real-valued activation function is kept. A notable
exception is observable on MNIST (PI) for the tanh activation where the accuracy degradation
is similar as when in addition the sign activation is used. However, interestingly enough, the test
error for weight-only quantization decreases on several datasets compared to their initializing
models from Table 5.2 and Table 5.3 (see quinary weights on MNIST and Cifar-10 for both
activation functions, and on Cifar-100 for tanh). This might either indicate a regularizing effect
as has also been noted in [117], or weight quantization does not harm the expressiveness of the
model and we benefit from longer training. After all, these findings are in line with other papers
that have shown little performance degradation when the real-valued activation function is kept
and only the weights are discretized [117, 137].
Next, we compare the corresponding test errors of discrete-valued DNNs with sign activation

once pre-trained with real-valued models (Table 5.2 and Table 5.3) and once using the two-stage
procedure (Table 5.4 and Table 5.5). The accuracy of the two-stage procedure always improves
over the former on MNIST (PI), Cifar-10, and SVHN, and also on Cifar-100 for tanh. The
results are mixed on the remaining datasets. In total, the accuracy improves in 10 out of 15
experiments for ReLU and in 13 out of 15 experiments for tanh. These results suggest that
pre-training using a two-stage procedure is mostly beneficial. However, we note that it remains
unclear whether the improved results are merely an artifact of the longer total training time.

– 103 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

1 50 100 150 200 250 300

30

31

32

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(a) local reparameterization trick

1 50 100 150 200 250 300

30

31

32

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(b) probabilistic forward pass

Figure 5.5: Test classification error [%] over number of epochs (averaged over ten runs) for different weight
types on Cifar-100. Initialization was performed using ReLU pre-training. (a) Results for train-
ing with the reparameterization trick using the Gumbel-softmax approximation. (b) Results for
training with the probabilistic forward pass.

straight-through Gumbel approximation probabilistic forward pass
Dataset Ternary+Sign Quaternary+Sign Quinary+Sign Ternary+Sign Quaternary+Sign Quinary+Sign
MNIST (PI) 1.302 ± 0.043 1.259 ± 0.065 1.225 ± 0.048 1.211 ± 0.054 1.180 ± 0.076 1.183 ± 0.069
MNIST 0.552 ± 0.052 0.552 ± 0.046 0.544 ± 0.045 0.550 ± 0.036 0.565 ± 0.033 0.566 ± 0.039
Cifar-10 8.500 ± 0.120 8.412 ± 0.197 8.240 ± 0.131 8.686 ± 0.216 8.638 ± 0.345 8.454 ± 0.255
Cifar-100 30.703 ± 0.320 30.706 ± 0.223 30.153 ± 0.328 30.509 ± 0.339 30.895 ± 0.441 29.889 ± 0.265
SVHN 2.573 ± 0.055 2.505 ± 0.044 2.556 ± 0.034 2.600 ± 0.066 2.558 ± 0.067 2.556 ± 0.070

Table 5.6: Classification errors [%] for various DNN settings. We report means and standard deviations
over ten experiments. The models in the first three columns were trained using the local repa-
rameterization trick with the straight-through Gumbel estimator. The models in the last three
columns were trained using the probabilistic forward pass. Initialization was performed using
ReLU pre-training.

We also compare our method with other work. We select [115, 118, 130, 138] since their
quantization is similar to ours. Hubara et al. [115] use binary weights and sign activations,
albeit using larger architectures. They report two results and achieve on average 1.18±0.22% on
MNIST (PI), 10.775±0.625% on Cifar-10, and 2.66±0.135 on SVHN. XNOR-Net [118] uses real-
valued data-dependent scale factors to perform a binary convolution. Using the same structure
as [115], they achieve 10.17% on Cifar-10. DoReFa-Net [130] achieves 2.9% on SVHN using
binary weights and binary 0-1 activations. The work in [138] is closest to ours and achieves
0.74% on MNIST and 10.30% on Cifar-10 using ternary weights and sign activations.

5.3.3 Straight-Through Gumbel Estimator and Probabilistic Forward Pass

In this section, we compare training using the standard setting (i.e., local reparameterization
trick in conjunction with the Gumbel-softmax approximation) with two different training meth-
ods. The first method replaces the Gumbel-softmax approximation with the straight-through
Gumbel estimator. The second method applies the probabilistic forward pass.
The results for both methods are summarized in Table 5.6. The results are slightly in favor

of the standard setting (Table 5.2). This indicates that it is less important to operate on truly
discrete activations during training as it is the case for the straight-through Gumbel estimator.
When comparing with the probabilistic forward pass, we observe that the tendency of obtaining
better results when using more discrete weight values is less pronounced. For instance, in Fig-

– 104 –

5.3 Experiments

ure 5.5(b) quaternary weights perform worst whereas more discrete weight values result in lower
test errors for the standard setting in Figure 5.5(a).

We note that the training behavior of both compared methods might be different to the stan-
dard setting and, therefore, adapted hyperparameters might yield improved results. However,
we do not expect substantial accuracy gains compared to the standard setting by further tuning
the hyperparameters.

5.3.4 Different Max Pooling Methods
In this section, we compare different methods for max pooling applied to Gaussian inputs. In
particular, we compare the following five methods for 2× 2 max pooling:

Maximum mean For each 2×2 region, we select the mean and the variance of the location with
the largest mean.

Maximum sample For each spatial location, a sample from the corresponding Gaussian is gen-
erated. Then we select for each 2 × 2 region the mean and the variance of the Gaussian
that generated the largest sample. This method was proposed by Peters and Welling [138].

Reparameterization Multiple samples of the maximum of a 2×2 region are computed by gener-
ating multiple samples from the Gaussian activations. Importantly, the Gaussian samples
are generated using the reparameterization trick to remain compatible with backpropa-
gation. We then compute the empirical mean and the empirical variance of the sampled
maxima for each 2×2 region. We conducted experiments for different numbers of generated
samples.

Shekhovtsov & Flach The method from Shekhovtsov and Flach [79] for approximating the
mean and the variance of the maximum of several Gaussians. We conduct experiments for
their two proposed methods, namely a quadratic-time approximation and a faster linear-
time approximation.

Iterated moment matching Our proposed method (see Section 5.2.3) that first approximates
the mean and the variance of the two upper and the two lower spatial locations. Then we
combine these two estimates to obtain an overall approximation of the maximum of the
2× 2 region.

Figure 5.6(a) shows the test error over the number of epochs on Cifar-10 for each of these
methods. The discrete-valued DNNs employ ternary weights and were initialized using ReLU
pre-training. Our iterated moment matching method and the quadratic-time approximation
from Shekhovtsov and Flach perform best. The linear-time method from Shekhovtsov and
Flach performs slightly worse, but is faster for 2× 2 max pooling compared to their quadratic-
time approximation. The remaining three methods (maximum mean, maximum sample, and
reparameterization) achieve a similar accuracy which is worse compared to the other methods.
Figure 5.6(b) shows the same results for discrete-valued DNNs initialized using tanh pre-

training. The results are qualitatively similar compared to the ReLU experiments. Notably,
their is no accuracy gap between the linear-time and the quadratic-time approximations from
Shekhovtsov and Flach. Furthermore, the maximum sample method from Peters and Welling
gets clearly outperformed by all the other methods.
Next, we investigate the influence of the number of samples used for the reparameterization

sampling method. The results are shown in Figure 5.6(c). At least two samples are required
in order to estimate the variance of the maximum. However, using only two samples performs
rather poor. The accuracy improves considerably for three samples and it continues to improve
as more samples are used. We did not conduct experiments for more than ten samples, but it
appears that the test error already saturates.

– 105 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

1 50 100 150 200 250 300

9

10

#epochs

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

Maximum mean

Maximum sample (Peters & Welling [138])

Shekhovtsov & Flach [79] (quadratic-time)

Shekhovtsov & Flach [79] (linear-time)

Reparameterization (10 samples)

Iterated moment matching (ours)

(a) ReLU pre-training

1 50 100 150 200 250 300

10

11

#epochs

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

Maximum mean

Maximum sample (Peters & Welling [138])

Shekhovtsov & Flach [79] (quadratic-time)

Shekhovtsov & Flach [79] (linear-time)

Reparameterization (10 samples)

Iterated moment matching (ours)

(b) tanh pre-training

1 50 100 150 200 250 300

9

10

11

#epochs

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

2 samples
3 samples
4 samples
5 samples
7 samples
10 samples

(c) ReLU pre-training

Figure 5.6: Test error [%] over number of epochs (averaged over ten runs) for different max pooling ap-
proximations on Cifar-10 using ternary weights (see main text for a detailed description of the
methods). For better visualization of the results, the depicted traces were smoothed using a sim-
ple moving average over five epochs. (a) Initialization was performed using ReLU pre-training.
(b) Initialization was performed using tanh pre-training. (c) Various numbers of samples for
reparameterization sampling. Initialization was performed using ReLU pre-training.

We emphasize that this method incurs a substantial computational overhead if many samples
are used. Furthermore, note that for each drawn sample, only a single input of the 2× 2 region
receives a gradient during backpropagation (the location whose sample is maximal). On the
contrary, in our method and the methods from Shekhovtsov and Flach, every input location
contributes to the maximum and, therefore, receives a gradient. We believe that this might also
be a reason for these methods to perform better. In summary, our results show that the quality
of the max pooling approximation is important and that distribution-aware max pooling can
improve the accuracy.

5.3.5 The Influence of Parameter Initialization and Dropout

The following experiments demonstrate the influence of parameter initialization on the prediction
accuracy. We conducted several experiments on Cifar-10 using ternary weights.
In the first experiment, we compare our initialization method for qν(W) using ReLU pre-

training with two random initialization methods. Both of these methods assign random values
to the real-valued weights w̃ and then initialize the probabilities qw(w) according to (5.17). The
first method samples real-valued weights w̃ ∼ N (0, 1). The second method samples real-valued
weights w̃ ∼ U([−1, 1]).

The results are shown in Figure 5.4(b). Our method converges faster than the random strate-
gies and achieves 4.964% lower absolute test error than the uniform random strategy, which
in turn achieves approximately 0.5% lower test error than the Gaussian strategy. The random
initialization schemes seem to get stuck in bad local minima. This indicates that the loss surface
is substantially more delicate to optimize compared to training a conventional real-valued DNN.
We also compare our method to the initialization method from Shayer et al. [137]. To do so,

we compute the probabilities that would have been assigned by their method and initialize our
parameterization of qν(W) using the corresponding normalized logits. Both methods perform
similar and the two traces are almost indistinguishable. We emphasize, however, that our
initialization method was designed to generalize to more than three weights, and we did not
expect to outperform the method from [137] using ternary weights. In summary, this highlights
that a proper initialization strategy is crucial for the training of weight distributions.
This raises the question whether it pays off to put more effort into pre-training to eventually

obtain a better discrete-valued DNN. To answer this question, we optimized several dropout rates

– 106 –

5.3 Experiments

1 50 100 150 200 250 300

8

10

12

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Pre-training: Model 1 (lower dropout)

Pre-training: Model 2 (standard setting)

Ternary (init. Model 1, lower dropout)

Ternary (init. Model 1, standard dropout)

Ternary (init. Model 2, lower dropout)

Ternary (init. Model 2, standard setting)

(a) tanh pre-training

1 50 100 150 200 250 300

6

7

8

9

10

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Pre-training: Model 1 (lower dropout)

Pre-training: Model 2 (standard setting)

Ternary (init. Model 1, lower dropout)

Ternary (init. Model 1, standard dropout)

Ternary (init. Model 2, lower dropout)

Ternary (init. Model 2, standard setting)

(b) ReLU pre-training

Figure 5.7: Test classification error [%] over number of epochs (averaged over ten experiments) on Cifar-10
for different dropout settings. The standard setting traces correspond to the results reported in
Table 5.3. The standard dropout setting uses the same dropout rates but a different pre-trained
model. The lower dropout setting uses lower dropout rates (see text for details). (a) Results for
tanh pre-training. (a) Results for ReLU pre-training.

for the initial real-valued DNN with tanh activation, while keeping all the other hyperparameters
the same. This resulted in dropout rates (0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1). We refer to this
dropout setting as lower dropout in the remainder of this section.

The corresponding learning curves for pre-training and the training of discrete-valued DNNs
are shown in Figure 5.7(a). Using lower dropout, we achieve an average test error of 7.133% for
the pre-trained DNNs—an absolute improvement of 0.773% compared to the standard setting
reported in Table 5.3. However, when using these models to initialize qν(W), we obtain inferior
accuracy for the discrete-valued DNNs with sign activation. Importantly, this does not depend on
whether we train the discrete-valued DNNs using the original dropout setting or lower dropout.
The results look similar but less pronounced for the ReLU activation function (Figure 5.7(b)).

Here, using lower dropout, we obtain a slightly worse accuracy during pre-training. However,
the accuracy gap for the discrete-valued DNNs is relatively large compared to the smaller gap
after pre-training.

We can also see that the original dropout rates perform best when they are used both during
pre-training and during training of the discrete-valued DNNs. However, we also observed that
different dropout rates in both stages can improve accuracy. More specifically, we conducted
an experiment on MNIST (PI) using different dropout rates of (0.1, 0.2, 0.3) for training of the
discrete-valued DNN, but we kept the original dropout rates of (0.2, 0.4, 0.4) during pre-training.
For initialization using ReLU pre-training, this yields improved test errors of 1.210%, 1.175%,
and 1.165% for ternary, quaternary, and quinary weights, respectively. For initialization using
tanh pre-training, the respective test errors improved to 1.289%, 1.261%, and 1.264%. When
using these lower dropout rates during pre-training, we obtained worse results for discrete weights
using both dropout settings. Note that we do not report these improved results in Table 5.2 and
Table 5.3 to maintain the clear experimental setup of using equal dropout rates for pre-training
and training of the weight distributions qν(W).

These results suggest that dropout might play an important role for the overall accuracy,
especially during pre-training. For practical applications, tuning the dropout rates might be a
key factor for obtaining a high accuracy. However, it is not well understood what properties
render a real-valued DNN a good candidate to initialize the weight distributions qν(W).

– 107 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

1 50 100 150 200 250 300
8

9

10

11

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Logits parameterization (ours)

Shayer parameterization [137], Shayer init.

Shayer parameterization [137], our init.

Shayer parameterization [137] (fine-tuned)

(a) ReLU pre-training

1 50 100 150 200 250 300
9

10

11

12

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Logits parameterization (ours)

Shayer parameterization [137], Shayer init.

Shayer parameterization [137], our init.

(b) tanh pre-training

Figure 5.8: Test classification error [%] over number of epochs on Cifar-10 for ternary weights. We compare
different parameterizations and initialization methods for qν(W). (a) Results for initialization
using ReLU pre-training. For the fine-tuned setting, an extended hyperparameter optimization
was conducted. (b) Results for initialization using tanh pre-training.

5.3.6 The Influence of the Distribution Parameterization

In the next experiments, we compare our parameterization of qν(W) for ternary weights with
the parameterization introduced by Shayer et al. [137]. Figure 5.8 shows learning curves for
the two parameterizations on Cifar-10. To ensure that the test error discrepancy between the
two methods can be primarily attributed to the parameterization and not to other experimental
settings, we trained the parameterization from Shayer et al. using both our and their proposed
initialization method for qν(W). Both initialization methods yield similar results, showing that
our initialization method also performs well using their parameterization.
Considering that their parameterization results in a different loss surface and a potentially

different training behavior, we fine-tuned the learning rate and the regularization parameter λ
for their parameterization. The corresponding results for initialization using ReLU pre-training
are shown in Figure 5.8(a). We obtained a mean test error of 8.881%±0.134 for a learning rate of
2 · 10−2 and λ = 10−11. Even for the fine-tuned setting, there is still a substantial test error gap
between the two parameterizations. Although our parameterization requires more parameters,
these results strongly indicate that our parameterization results in a loss surface that facilitates
the optimization procedure.

5.3.7 The Influence of Batch Normalization

In the next experiment, we verify the importance of estimating the training set statistics required
for batch normalization using the most probable discrete-valued DNN from qν(W). Therefore,
we compare the results of two experiments that only differ in the estimation of the training set
statistics: The first method computes an exponential moving average over the statistics (5.10)
obtained during training. The second method employs the standard setting, i.e., computing an
exponential moving average over 100 randomly selected mini-batches using the most probable
discrete-valued DNN after every epoch.
The corresponding learning curves on Cifar-10 for ternary weights and initialization using

ReLU pre-training are shown in Figure 5.9(a). The accuracy degrades heavily when the statistics
are estimated during training. Moreover, we observe stronger fluctuations in the learning curves
of individual experiments, especially in the early training phase. Since this fluctuation behavior

– 108 –

5.3 Experiments

1 50 100 150 200 250 300
8

10

12

14

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Batch norm. during training
Batch norm. with discrete DNN

(a) averaged over ten runs

1 50 100 150 200 250 300
8

10

12

14

16

18

20

#epochs

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Batch norm. during training
Batch norm. with discrete DNN

(b) individual runs

Figure 5.9: Test classification error [%] over number of epochs on Cifar-10 for ternary weights. Initialization
was performed using ReLU pre-training. Results were obtained by estimating the training set
statistics for batch normalization using an exponential moving average (i) during training and
(ii) after every epoch using the most probable discrete-valued DNN over 100 mini-batches. (a)
Average test errors over ten runs. (b) Test errors of two individual runs initialized using the
same pre-trained DNN.

is lost in the averaged results of Figure 5.9(a), two exemplary learning curves of individual
experiments using the same pre-trained DNN for initialization are shown in Figure 5.9(b).

Note that the estimation of the training set statistics does not influence the training procedure
for the remaining parameters. Furthermore, we emphasize that both experiments were initialized
using the same pre-trained models. As a consequence, the accuracy difference can be clearly
attributed to the different methods of estimating the batch normalization statistics.

5.3.8 Model Averaging

So far, our experimental evaluation was restricted to analyzing the most probable discrete-
valued DNN from qν(W). To evaluate the information present in the learned discrete weight
distribution qν(W), we conducted model averaging experiments by sampling DNNs from qν(W).

All reported results are obtained by averaging the unnormalized logits aL right before the
softmax activation is applied. We also conducted additional experiments (results not reported)
where we evaluated (i) averaging of the softmax predictions xL and (ii) predictions by majority
vote. In essence, all averaging methods achieve better results as more samples are averaged.
Averaging the logits and the softmax outputs performs similarly (but slightly in favor of logit
averaging) which both consistently outperform majority vote. For softmax averaging, it is
important to perform output activation normalization; otherwise the softmax outputs are closer
to one-hot and, therefore, a similar behavior to majority vote is obtained.
Furthermore, for each DNN sampled from qν(W), we re-estimate the batch normalization

parameters by computing an exponential moving average over 100 mini-batches from the training
set. This mostly improves the accuracy compared to using the batch normalization statistics
from the most probable DNN of qν(W) (results not reported), especially when only few samples
are averaged. However, we emphasize that this statement does not hold true in general, e.g.,
on Cifar-10 and SVHN the accuracy deteriorates when the batch normalization parameters are
re-estimated. We believe that the reason for this lies in a reduction of model diversity due
to the re-estimation. The results show that at least individual samples from qν(W) achieve a
higher accuracy on every dataset when their batch normalization parameters are re-estimated.

– 109 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

Dataset 1 sample 3 samples 5 samples 10 samples 20 samples 100 samples
1.239 ± 0.045 1.215 ± 0.047 1.210 ± 0.049 1.205 ± 0.049 1.199 ± 0.047 1.196 ± 0.047

MNIST (PI) 1.211 ± 0.047 1.177 ± 0.043 1.174 ± 0.046 1.168 ± 0.047 1.168 ± 0.050 1.161 ± 0.048
1.200 ± 0.054 1.175 ± 0.049 1.174 ± 0.052 1.169 ± 0.052 1.169 ± 0.050 1.169 ± 0.046
0.559 ± 0.053 0.530 ± 0.052 0.527 ± 0.051 0.525 ± 0.051 0.522 ± 0.051 0.522 ± 0.050

MNIST 0.551 ± 0.048 0.532 ± 0.038 0.527 ± 0.038 0.527 ± 0.037 0.525 ± 0.036 0.523 ± 0.037
0.560 ± 0.047 0.537 ± 0.039 0.534 ± 0.038 0.531 ± 0.040 0.530 ± 0.040 0.531 ± 0.041
9.211 ± 0.246 8.071 ± 0.203 7.837 ± 0.209 7.660 ± 0.186 7.568 ± 0.180 7.517 ± 0.179

Cifar-10 9.274 ± 0.297 8.036 ± 0.186 7.778 ± 0.163 7.582 ± 0.162 7.491 ± 0.159 7.394 ± 0.161
9.014 ± 0.262 7.916 ± 0.200 7.684 ± 0.175 7.506 ± 0.165 7.426 ± 0.167 7.361 ± 0.161

30.981 ± 0.379 28.647 ± 0.271 28.206 ± 0.277 27.863 ± 0.239 27.706 ± 0.261 27.542 ± 0.280
Cifar-100 30.978 ± 0.391 28.500 ± 0.234 28.015 ± 0.222 27.576 ± 0.183 27.383 ± 0.181 27.223 ± 0.194

30.400 ± 0.369 28.215 ± 0.283 27.769 ± 0.244 27.450 ± 0.246 27.300 ± 0.242 27.143 ± 0.264
2.566 ± 0.074 2.344 ± 0.056 2.301 ± 0.053 2.268 ± 0.050 2.253 ± 0.051 2.241 ± 0.051

SVHN 2.525 ± 0.058 2.304 ± 0.054 2.262 ± 0.050 2.230 ± 0.048 2.211 ± 0.047 2.194 ± 0.047
2.534 ± 0.065 2.321 ± 0.058 2.289 ± 0.066 2.257 ± 0.064 2.246 ± 0.060 2.233 ± 0.060

Table 5.7: Test classification errors [%] of model averaging for selected numbers of samples from qν(W).
The first, second, and third row of each dataset correspond to ternary, quaternary, and quinary
weights, respectively. For each of ten weight distributions qν(W), ten experiments of averaging
up to 100 predictions were conducted. We report the mean and the standard deviation over these
100 experiments. Initialization was performed using ReLU pre-training.

Dataset 1 sample 3 samples 5 samples 10 samples 20 samples 100 samples
1.352 ± 0.050 1.316 ± 0.049 1.310 ± 0.046 1.311 ± 0.040 1.306 ± 0.044 1.305 ± 0.041

MNIST (PI) 1.308 ± 0.061 1.273 ± 0.061 1.265 ± 0.063 1.263 ± 0.060 1.260 ± 0.064 1.258 ± 0.064
1.298 ± 0.070 1.270 ± 0.066 1.267 ± 0.065 1.263 ± 0.063 1.261 ± 0.061 1.252 ± 0.054
0.612 ± 0.042 0.572 ± 0.032 0.565 ± 0.032 0.561 ± 0.027 0.554 ± 0.026 0.550 ± 0.024

MNIST 0.623 ± 0.036 0.592 ± 0.036 0.593 ± 0.034 0.592 ± 0.035 0.588 ± 0.039 0.585 ± 0.037
0.618 ± 0.044 0.586 ± 0.037 0.579 ± 0.033 0.570 ± 0.025 0.566 ± 0.025 0.564 ± 0.020
9.965 ± 0.242 8.866 ± 0.152 8.640 ± 0.144 8.468 ± 0.131 8.386 ± 0.125 8.324 ± 0.123

Cifar-10 10.152 ± 0.301 8.902 ± 0.200 8.677 ± 0.195 8.499 ± 0.152 8.398 ± 0.149 8.307 ± 0.134
9.729 ± 0.207 8.704 ± 0.161 8.504 ± 0.136 8.360 ± 0.130 8.299 ± 0.131 8.255 ± 0.137

34.121 ± 0.419 31.506 ± 0.299 30.975 ± 0.240 30.562 ± 0.225 30.325 ± 0.219 30.170 ± 0.216
Cifar-100 35.113 ± 0.816 31.793 ± 0.325 31.111 ± 0.314 30.600 ± 0.259 30.326 ± 0.212 30.138 ± 0.227

33.733 ± 0.482 31.257 ± 0.360 30.719 ± 0.320 30.355 ± 0.318 30.176 ± 0.299 30.023 ± 0.280
2.702 ± 0.134 2.446 ± 0.094 2.394 ± 0.087 2.355 ± 0.082 2.337 ± 0.078 2.325 ± 0.076

SVHN 2.690 ± 0.084 2.424 ± 0.062 2.374 ± 0.056 2.336 ± 0.051 2.311 ± 0.054 2.299 ± 0.050
2.638 ± 0.078 2.408 ± 0.052 2.367 ± 0.053 2.330 ± 0.052 2.318 ± 0.048 2.302 ± 0.048

Table 5.8: Test classification errors [%] of model averaging for selected numbers of samples from qν(W).
The first, second, and third row of each dataset correspond to ternary, quaternary, and quinary
weights, respectively. For each of ten weight distributions qν(W), ten experiments of averaging
up to 100 predictions were conducted. We report the mean and the standard deviation over these
100 experiments. Initialization was performed using tanh pre-training.

However, in some experiments the ensemble seems to benefit from including weaker but more
diverse DNNs. We conclude that whether to apply such a re-estimation or not remains a tunable
parameter of the method, whose choice depends on the dataset and on the number of DNNs one
is willing to average over.
The results for logit averaging with batch normalization re-estimation and initialization using

ReLU pre-training are shown in Figure 5.10. Table 5.7 lists concrete test errors for selected
numbers of averaged models. Table 5.8 lists the same results for initialization using tanh pre-
training. In all our experiments, three samples were sufficient for model averaging to surpass
the accuracy of the most probable model; in most cases two samples were already sufficient.
In Figures 5.10(a), 5.10(b), and 5.10(e), we can see that the accuracy order of different weight

types (ternary, quaternary, and quinary) is different for model averaging and the most probable
DNN. However, this is not a major concern as the weight distribution qν(W) and ensembles
inferred from it can be regarded as a different, much more expressive model class than the single
most probable DNN. This becomes evident when measuring the memory overhead for storing the
model parameters. The real-valued variational parameters ν require substantially more memory
compared to the weights of a real-valued DNN with the same architecture.

In summary, only few samples are required to substantially outperform the corresponding
most probable model from qν(W). We note that an ensemble can potentially be used to obtain
prediction uncertainties to further guide any applications depending on the ensemble’s output.

– 110 –

5.3 Experiments

1 20 40 60 80 100

1.12

1.14

1.16

1.18

1.2

1.22

#averaged samples

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(a) MNIST (PI)

1 20 40 60 80 100

0.48

0.5

0.52

0.54

0.56

0.58

#averaged samples

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(b) MNIST

1 20 40 60 80 100

7.5

8

8.5

#averaged samples

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(c) Cifar-10

1 20 40 60 80 100

27

28

29

30

#averaged samples

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(d) Cifar-100

1 20 40 60 80 100

2.2

2.3

2.4

2.5

#averaged samples

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

Ternary
Quaternary

Quinary

(e) SVHN

Figure 5.10: Test classification error [%] over number of averaged predictions obtained from samples of
qν(W). We report the mean and one standard deviation (shaded region) over ten experiments
for ten different weight distributions qν(W) (i.e., 100 experiments in total). The test errors
of the single most probable DNNs from qν(W) are shown as dashed lines. Initialization was
performed using ReLU pre-training.

However, since our study focuses on the single most probable discrete-valued DNN, an experi-
mental evaluation of uncertainties obtained from an ensemble is beyond the scope of this work.

– 111 –

5 Learning Discrete-Valued Neural Networks Using Weight Distributions

5.4 Discussion
We have introduced a method to train discrete-valued DNNs by means of an indirect procedure:
In the first step, a discrete distribution over the weights qν(W) is trained by gradient-based
optimization. In the second step, a discrete-valued DNN is inferred from qν(W) either by
taking its most probable weights or by sampling from it.
Whereas previous works (see [137, 138]) are tailored to binary and ternary weights, our method

is applicable to arbitrary discrete weights. This is accomplished by simpler parameterization
and initialization schemes for the discrete weight distribution qν(W). Furthermore, we have
introduced a distribution-aware approximation for max pooling. This is in contrast to the
method proposed in [138] where the input distributions are used to randomly select a maximum
component, but not to approximate the mean and the variance of the maximum itself. As
opposed to the majority of the literature where the weights of the input and output layers are
not quantized, we also quantize the weights in these layers.
In our experiments, we achieved state-of-the-art performance on several image classification

datasets. We have shown that both the local reparameterization trick and the probabilistic
forward pass are effective methods to train qν(W). Our method does not rely on the STE.
Compared to the standard continuous Gumbel-softmax approximation, we did not observe im-
proved accuracies when the straight-through Gumbel estimator is employed.
Our experiments show that using more discrete weight values mostly results in higher accu-

racy. This allows us to effectively trade off between computational requirements and accuracy.
Nevertheless, we note that we cannot always expect accuracies to improve if more weights are
used. The optimal number of discrete weight values depends on the dataset and the architecture,
and using fewer weights might actually have a regularizing effect.
When only the weights are quantized and the activations remain real-valued, we observed

almost no accuracy degradation compared to using real-valued weights and activations. This is in
line with the majority of the literature stating that activation quantization has a stronger impact
on the accuracy than weight quantization. Using a two-stage procedure where a first training
run quantizes only the weights and a subsequent second training run additionally quantizes
the activations, we mostly observed higher accuracies than by quantizing both weights and
activations immediately. However, we did not investigate whether this is a mere artifact of a
longer total training time.
Our model averaging experiments using samples from qν(W) have shown that only few (at

most three) samples are sufficient to outperform the most probable DNN. By selecting an ap-
propriate number of samples, we can trade off between computational costs and accuracy. We
found that re-estimating the batch normalization statistics for the individual DNNs resulted
in higher accuracy when only few samples are averaged. However, in some cases we observed
the opposite when many samples were averaged. We conclude that whether to apply such a
re-estimation or not remains a tunable hyperparameter of the proposed method.
We have shown that our initialization method for qν(W) is at least as effective as the method

proposed in [137] for ternary weights. Our experiments show that a proper initialization is
crucial to obtain a reasonable accuracy and extracting knowledge from a pre-trained real-valued
DNN is a very effective method. We believe that the final accuracy of a discrete-valued DNN
does not crucially depend on how this knowledge is extracted exactly and there might be many
different ways of successfully achieving this. Therefore, a simple solution suitable for arbitrary
discrete weights as proposed in this chapter might be an optimal choice.
We found that initialization using pre-trained DNNs using ReLU activations consistently

results in higher accuracies compared to using the tanh activation. As expected, the ReLU
activation outperforms tanh for real-valued DNNs. However, it is rather surprising that these
results translate to discrete-valued DNNs considering that the tanh is much closer in shape to
the ultimately used sign function.
Regarding the parameterization of qν(W), we have observed that our logit parameterization

– 112 –

5.4 Discussion

facilitates training and outperforms the conditional parameterization from [137] for ternary
weights. This verifies our intuition that the logit parameterization results in a well-behaved loss
surface that is more amenable to optimization. For instance, an arbitrary weight probability
can be increased by increasing the corresponding logit. This is more difficult to achieve for other
parameterizations where the influence of the parameters on the corresponding probabilities is
more entangled.

Furthermore, we improved on the stochastic max pooling approximation from Peters and
Welling [138] by taking distributional properties explicitly into account. In our experiments,
we compared several max pooling approximations and verified that it is important to also take
distributional properties into account.

5.4.1 Limitations and Future Work
When varying the number of discrete weight values, we sometimes observed mixed results, espe-
cially for quaternary weights. We believe that this might be due to the missing but potentially
important zero weight. Future work should address the role of the zero weight and different
(non-symmetric) quantization levels for quaternary weights. Furthermore, discrete weights with
trainable quantization levels might be promising to improve expressiveness and accuracy of the
model.
As briefly mentioned in Section 5.1.3, our method indirectly parameterizes the means E[w]

and the variances V[w]. The number of parameters of the logit parameterization scales linearly
in the number of discrete weight values Q. This might be prohibitive for many discrete weight
values. Future work should explore the possibility of directly parameterizing E[w] and V[w].
For instance, our reasoning in Section 5.1.3 suggests that only parameterizing the mean and
selecting the smallest possible variance for that mean might be promising.
Although pre-training using a real-valued DNN is crucial, it is not well understood which

properties distinguish a good pre-trained model. For instance, we observed that pre-trained
models achieving a higher accuracy do not necessarily result in a better performing discrete-
valued DNN. In our experiments, we obtained mixed results by varying the dropout rates. We
believe that dropout plays an important role in this context. It also appears that dropout affects
distribution training differently than training conventional real-valued DNNs. Furthermore, we
did not investigate why initialization using ReLU pre-training outperforms initialization using
tanh pre-training although ReLU exhibits a rather different functional shape than sign. We
hypothesize that batch normalization might be an important factor for the successful transfer
of ReLU features to sign features. A thorough experimental evaluation of our conjectures and
open questions regarding initialization is left to future work.

Since our method crucially relies on a pre-trained model, our method is also related to transfer
learning and knowledge distillation. A promising direction for future research is to investigate
whether established techniques from these fields can be used to further improve the accuracy.
Our sampling experiments have shown that the distribution qν(W) contains more information

than its most probable weights. However, we did not evaluate predictions uncertainties obtained
by averaging many DNNs sampled from qν(W). We leave this to future work.

Applying our method to a wider range of architectures and datasets is an important direction
of future research. In particular, since our method introduces a non-negligible computational
overhead during training, scaling it to very large architectures and datasets such as ImageNet
would be an important contribution.

– 113 –

Probabilistic Methods for Resource Efficiency in Machine Learning

6
Weight Sharing Using Dirichlet Processes

Besides variational inference, the second pillar of approximate Bayesian inference are sam-
pling based methods. These methods generate samples from the induced posterior distribu-
tion p(W |D) after observing some dataset D. The generated samples then represent a discrete
approximation to the posterior distribution p(W |D). Subsequently, these samples are used
to estimate expectations with respect to the posterior—a process also known as Monte Carlo
integration or Monte Carlo averaging.
However, when applying sampling techniques to DNNs, we are facing several challenges. Gen-

erating weakly correlated or even independent samples for DNNs is difficult since the posterior
p(W |D) inherits all the nonlinearity and multimodality properties from DNNs. The de facto
standard methods to perform sampling for weight posteriors of DNNs are HMC and variants
thereof [69, 70]. HMC is generally known to produce good samples and often serves as a golden
standard for assessing the performance of novel Bayesian methods.
However, HMC is a time-consuming procedure that requires several gradient computations

to generate a single sample. Moreover, the standard HMC algorithm operates in batch mode,
i.e., the gradients must be computed using the whole dataset D. Because of this it is often not
possible to generate samples on the fly when they are needed or it is simply wasteful to discard
these samples after generating them in a time-consuming procedure. Note that as discussed
in Section 3.5, there exist some promising stochastic MCMC algorithms that operate on mini-
batches [102, 103, 192, 193], but we focus on the standard HMC algorithm as it is less prone to
random walk behavior. As a consequence, we are often required to precompute these samples
offline and store them. This, however, might introduce large memory requirements, especially
since a single DNN might be already quite large.
In this chapter, we set out the goal to reduce the memory consumption of an ensemble of

fully connected DNN samples. For this purpose, we adopt the technique of weight sharing, i.e.,
different connections of the DNN share the exact same weight values. We refer the reader to
Section 4.3.1 for a review of DNN methods relying on weight sharing. Sharing weights of a
single DNN does not provide much benefit in terms of memory requirements if additionally the
assignments of weights to their corresponding connections must be stored. Nevertheless, for
an ensemble we can distribute the memory requirements for the weight assignments over many
DNNs by using the same weight assignment multiple times and only varying the shared weights.
To achieve the weight sharing, we incorporate a DP prior [194] into our model. A DP is

essentially a distribution over distributions. A DP has certain properties that make it appealing
to achieve parameter sharing in various settings. We propose to introduce a DP prior over the
weight distribution p(W) which results in a weight sharing. On the downside, exact posterior
inference using DPs is typically intractable and one is forced to use approximations which are
often slow.
The proposed model maintains a set of weights w and weight assignment matrices Z that

assign each connection of the DNN to a particular weight w ∈ w. We propose to use a block
Gibbs sampling scheme for inference in our model, i.e., we alternate between sampling the
weights w conditioned on the weight assignments Z and sampling the weight assignments Z
conditioned on the weights w. We introduce algorithmic techniques and approximations that
utilize the structure of DNNs to make posterior inference computationally tractable. Before

– 115 –

6 Weight Sharing Using Dirichlet Processes

sampling new weight assignments Z, we sample an ensemble of weights in order to distribute
the memory requirements for the weight assignments Z over several weight samples.
In our experiments, we demonstrate the feasibility of our approach in various classification

and regression experiments. Our model maintains a good prediction performance compared to
Bayesian DNNs without weight sharing and DNNs trained with backpropagation while using
only a fraction of the weights. The proposed method outperforms DNNs with random weight
sharing on most datasets and on some datasets it even outperforms Bayesian DNNs without
weight sharing. This indicates that our method has a regularizing effect and helps sampling
based algorithms that typically scale poorly with the size of the sampling space, i.e., a large
DNN can be used while operating in a low-dimensional weight space.
There exist different possibilities to achieve weight sharing in a DNN. For instance, Chen et

al. [76] proposed to use a random weight sharing and to store the weight assignments implicitly
using a hashing function. Other methods rely on a heuristic weight sharing, for instance, ob-
tained by clustering the weights using the k-means algorithm [144]. Many models also employ
a fixed weight sharing based on prior knowledge. Examples are CNNs where the weights are
shared among different spatial locations, RNNs where the weights are shared among different
time steps, and autoencoders where the weights of the decoder are often transposed versions of
the encoder weights [22].
Our method is different in that the weight sharing is an inherent property of the model. As a

consequence, the weight sharing emerges naturally as part of the Bayesian inference procedure
and is adapted to the given data. Furthermore, our method does not require to specify the
number of different weight values in advance. The number of weight values is only weakly
determined by the choice of a concentration parameter αdp governing the DP prior.

A related approach to reduce the memory for storing an ensemble of DNNs is presented by
Korattikara et al. [170]. Their approach distills the knowledge contained in a sequence of MCMC
samples in an online fashion into a single DNN. This avoids the need to store an ensemble of
DNNs in the first place. However, their approach relies on stochastic MCMC methods that
generate samples rapidly in order to perform SGD.
This chapter is largely based on our paper “Bayesian Neural Networks with Weight Sharing

Using Dirichlet Processes” that has been published in the IEEE journal “Transactions on Pat-
tern Analysis and Machine Intelligence” [159]. We begin our discussion in Section 6.1 with a
brief review of DPs and one of their most common applications, i.e., mixture models with an
unbounded number of components. In Section 6.2, we introduce our Bayesian DNN model using
DPs and present our sampling based inference method for this model. We present our extensive
experiments in Section 6.3 before we discuss our findings in Section 6.4.

6.1 Dirichlet Processes: A Distribution over Distributions

A DP is a distribution over distributions parameterized by a concentration parameter αdp > 0
and a base distribution G0. Ferguson [194] defined the DP in the following nonconstructive
way. Given an arbitrary finite partition (R1, . . . ,RM) of the space R on which G0 is defined.
G is drawn from a DP with parameters G0 and αdp, denoted as G ∼ DP(G0, αdp), if the vector
of masses that G assigns to the subsets Rm follows a Dirichlet distribution with parameters
(αdpG0(R1), . . . , αdpG0(RM)).
By investigation of the following simple hierarchical Bayesian model, we can gain more insights

into the practical utility of the DP. Consider a distribution G that is drawn from a DP and a
dataset {x1, . . . ,xN} that is obtained by drawing samples from the random distribution G, i.e.,

G ∼ DP(G0, αdp)
xn ∼ G. (6.1)

– 116 –

6.1 Dirichlet Processes: A Distribution over Distributions

By marginalizing out the random distribution G, the distribution over the samples xn can be
written as

xn ∼
1

n− 1 + αdp

n−1∑
n′=1

δxn′ + αdp
n− 1 + αdp

G0, (6.2)

where δxn′ denotes a point mass located at xn′ [195]. Equation (6.2) shows that samples xn drawn
from G have a positive probability of being exactly equal to some previously drawn samples xn′
for n′ < n. Note that this is true even if the base distribution G0 is continuous, whereas drawing
the exact sample multiple times from a continuous distribution has zero probability. As we will
see in the remainder, this property of DPs enables the desired parameter sharing.
The distribution (6.2) has an intuitive interpretation in terms of a Pólya urn scheme [196].

Assume an urn that initially contains αdp black balls. When a black ball is drawn, both the
black ball and a new ball with a randomly generated color (corresponding to a draw from G0)
are returned to the urn. If a non-black ball is drawn, both the currently drawn ball and an
additional ball of the same color are returned to the urn. This scheme implies a rich-get-richer
principle where colors being drawn more often tend to be drawn more often in the future.
There exist other equivalent definitions of the DP that shed more light on the properties

of the random distribution G drawn from a DP. The constructive stick-breaking definition of
Sethuraman [197] shows that G can be represented as an infinite mixture of point masses. More
specifically, a sample G from DP(G0, αdp) has the form ∑∞

k=1 πkδθk where

θk ∼ G0 (6.3)

πk = ξk

k−1∏
j=1

(1− ξj) , ξk ∼ Beta(1, αdp). (6.4)

We denote that π = {πk}∞k=1 is drawn according to (6.4) as π ∼ GEM(αdp).21 The term
“stick-breaking” originates from viewing (6.4) as successively breaking off a random proportion
(determined by a draw from Beta(1, αdp)) from a stick and assigning it to the mixture probabil-
ities πk. By starting from a stick of unit length, the mixture probabilities πk will sum to one and
a valid mixture distribution is obtained. The stick-breaking definition makes the discreteness of
G explicit which is utilized to achieve parameter sharing in various settings.
However, storing an infinite number of mixture components as required by the stick-breaking

definition is impossible. Fortunately, when dealing with a finite amount of data, it suffices to
store only those components that are assigned to at least one data sample. Before showing how
DPs are useful in obtaining shared weights in DNNs, we illustrate practical inference algorithms
for one of their most prominent use cases: DP mixtures, i.e., mixture models with an unbounded
number of components.

6.1.1 Dirichlet Process Mixtures
We consider mixture models of distributions of the form F (θ) to model the distribution over
some observations D = {x1, . . . ,xN}, where θ are the free parameters governing the distribution
F . For instance, in the case of GMMs we have F (θ) = N (µ,Σ) and θ = (µ,Σ). The DP mixture
model is obtained by adding an additional level to the hierarchy of the model specified by (6.1)
to obtain

G ∼ DP(G0, αdp)
θn ∼ G
xn ∼ F (θn). (6.5)

21 The term GEM was introduced in [198] and stands for Griffiths, Engen, and McCloskey.

– 117 –

6 Weight Sharing Using Dirichlet Processes

The corresponding graphical model is shown in Figure 6.1(a). In this model each observation xn
is associated with its individual component parameters θn. Nevertheless, since the component
parameters are drawn from a random distribution G drawn from a DP, several of the component
parameters θn will be shared with positive probability. It is then natural to define a component
or a cluster as those samples xn that are assigned equal component parameters θn.
However, it would be wasteful to store the exact same parameters θn multiple times and most

algorithms are based on a different equivalent view of DP mixtures. To develop a practical
algorithm, it is convenient to consider the limit of K → ∞ for finite mixture models with K
components [195, 199]. We consider a Bayesian formulation of mixtures of K distributions of
the form F (θ). Each component is associated with its own component parameters θk, and each
observation xn is associated with an indicator zn ∈ {1, . . . ,K} that specifies the component
from which it was generated, i.e., xn ∼ F (θzn). The indicators zn are drawn from a discrete
distribution with mixture probabilities π. We assume a prior distribution θk ∼ G0 and a sym-
metric Dirichlet prior π ∼ Dirichlet(αdp/K, . . . , αdp/K) over the mixture probabilities. Here,
we assume that G0 and αdp are fixed, but we note that hyperpriors over them are considered in
[199]. The model can be summarized as

π ∼ Dirichlet(αdp/K, . . . , αdp/K) (6.6)
zn ∼ Discrete(π) (6.7)
θk ∼ G0 (6.8)
xn ∼ F (θzn). (6.9)

In this model we can analytically integrate out the mixture probabilities π to obtain a prior
over the indicators zn as a product of conditional priors

p(z) =
N∏
n=1

p(zn |z1, . . . , zn−1), (6.10)

where the individual factors are given by

p(Zn = k |z1, . . . , zn−1) = Nn,k + αdp/K

n− 1 + αdp
. (6.11)

Here we have defined Nn,k := |{n′ : zn′ = k, n′ < n}| to be the number of indicators zn′ for
n′ < n that are assigned to component k.

The DP mixture model is obtained by considering the limit K →∞. In this case the Bayesian
model is updated by replacing (6.6) with

π ∼ GEM(αdp). (6.12)

The corresponding graphical model is shown in Figure 6.1(b). The conditional prior (6.11)
obtained by integrating out the mixture probabilities π is given by

p(Zn = k |z1, . . . , zn−1) =


Nn,k

n−1+αdp
Nn,k ≥ 1

αdp
n−1+αdp

Nn,k = 0.
(6.13)

From (6.13) we can see that the probability of assigning zn = k is proportional to the number
of zn′ for n′ < n that are already assigned to k. With probability proportional to αdp, zn
will be assigned to a new value that is different from all the currently assigned zn′ . Note that
by comparing (6.13) and the Pólya urn scheme (6.2), we can see that our original view of DP
mixtures (6.5) is equivalent to considering the limit K →∞ for finite mixture models.
The particular form of the conditional prior (6.13) is called a Chinese restaurant process

– 118 –

6.1 Dirichlet Processes: A Distribution over Distributions

G0α

G

θn

xn

N

(a)

α

π

zn

G0

θk

xn

∞

N

(b)

G0

wl
k

α

πl

zli,j

yn xn

β2

∞

L

Ml

N

(c)

Figure 6.1: BN illustration of various models. Observed quantities are represented as shaded circles. (a)
Per-sample parameter view of DP mixtures. Each sample is associated with its own component
parameters θn. Due to the discreteness of DPs, some of the parameters θn will be shared. (b)
Explicit parameter view of DP mixtures. The distinct component parameters θk are explicitly
modeled. Each sample is associated with an indicator zn that links to a particular component
k. (c) DP DNN model with layerwise weight sharing. The dashed circle indicates that β2 is
only relevant for regression. The prior weight variance γ2 has been absorbed into G0 and is not
shown explicitly. For global weight sharing, the dependency on l is dropped.

(CRP) due to an analogy with Chinese restaurants that seemingly have an infinite supply of
tables. The analogy is typically illustrated in terms of a restaurant with an infinite number
of tables and customers that enter the restaurant in sequence [200]. The first customer enters
the restaurant and occupies a table. The following customers enter the restaurant and either
sit at a table with probability proportional to the number of customers already sitting at that
table or they occupy a new table with probability proportional to αdp. This process specifies a
distribution over partitions of the customers, i.e., who is sitting together with whom at a table.
A useful property of the CRP—also known as exchangeability—is that the resulting partition

does not depend on the particular order in which the customers arrive. Many practical algorithms
exploit this property as it allows us to assume an arbitrary order in which the customers arrive.
Exchangeability can be easily verified by noting that the right hand side of (6.13) only depends
on the numbers of zn assigned to the same components k and not on the particular values of zn.
It is easily seen that the number of components as specified by (6.13) is unbounded as there

is always a positive probability of creating a new component. The overall number of clusters is
governed by the concentration parameter αdp, i.e., larger values of αdp induce a higher probability
of creating a new component. It can be shown that the asymptotic growth of the number of
components is logarithmic in the number of customers [200]. Note that due to the unbounded
number of components K also the numbers of component parameters θk becomes unbounded.
It turns out that this does not imply any technical difficulties for practical algorithms since it
suffices to store only those θk that are currently assigned by some indicator zn.

6.1.2 Bayesian Inference for Dirichlet Process Mixtures

Performing exact Bayesian inference in a DP mixture requires summing over all possible assign-
ments of zn that result in different partitions of the data samples xn. This summation, however,
becomes intractable quickly and we have to resort to approximations for any moderate number
of samples N . In this section, we discuss three widely applicable approximate Bayesian inference
algorithms based on MCMC that are also discussed by Neal in [195]. The presented methods are
Gibbs sampling algorithms that update one indicator zn at a time while keeping the remaining

– 119 –

6 Weight Sharing Using Dirichlet Processes

variables fixed. We refer to Section 3.2.4 for a more detailed discussion on sampling methods
and Gibbs sampling in particular.
The first and the second method are restricted to conjugate models, i.e., the base distribution

G0 is conjugate to the likelihood F (θ) (see Section 3.1.1). The third method is also applicable
to non-conjugate models. The discussed methods operate on the unbounded mixture model
discussed in the previous section where the mixture probabilities π have been integrated out to
obtain the conditional prior (6.13). The state of the model is determined by the set of indicator
variables z = {z1, . . . , zN} and the mixture parameters Θ = {θ1, . . . ,θK}.
We emphasize that in this model the specific values of the indicators zn are not relevant and

they are only significant in that they determine whether zn and zn′ for n 6= n′ are equal or not.
For simplicity, we assume that the indicators zn take values from {1, . . . ,K} where K denotes
the number of currently assigned components, i.e., for each k with 1 ≤ k ≤ K there exists at
least one zn = k. An indicator zn is called a singleton if there exists no other indicator zn′ = zn
for n′ 6= n. As we will see, singletons often require special treatment in inference algorithms.
For the first and the second method, we assume a conjugate model that permits computation

of the required integrals and posterior distributions in closed form. Furthermore, we assume
that G0 is from a family from which it is easy to draw samples from. This implies that we can
easily draw samples from the induced posterior distributions after observing data.

Method 1: The first method proceeds by alternately sampling the indicators z and the mixture
parameters Θ. To sample from the distribution of a single indicator zn conditioned on the
remaining variables of the current state, we can exploit exchangeability of the CRP and assume
that zn was the last observation. This allows us to express the prior of zn conditioned on all
the other zn′ for n′ 6= n in the form of the last factor n = N of (6.13). Let z−n = z \ {zn}
be the set of indicators without zn, and let N−n,k = |{n′ : zn′ = k, n′ 6= n}| be the number of
indicators without zn that are currently assigned to component k. Then the required conditional
probability is proportional to

p(Zn = k |z−n,Θ) ∝
{
N−n,kF (xn |θk) k ≤ K
αdp

∫
F (xn |θ)G0(θ)dθ k unassigned.

(6.14)

Given our conjugacy assumption, we can compute the integral for unassigned k in (6.14) ana-
lytically.
By repeatedly sampling indicator variables zn according to (6.14), we expect to see new

mixture components arise from time to time. Moreover, we also expect to see that existing
components vanish whenever a singleton indicator is assigned to a different already existing
component. In fact, if zn is a singleton it will always be assigned to a different component since
N−n,zn = 0. In both cases, emerging components and vanishing components, we additionally
have to take care of the corresponding component parameters θk. If a singleton component van-
ishes, it suffices to discard the corresponding θk. If a new component emerges, a corresponding
component parameter θk is created by sampling from the posterior distribution obtained by
observing only xn, i.e.,

θk ∼ p(θk |xn) ∝ G0(θk)F (xn|θk). (6.15)

Note that due to our conjugacy assumption above, evaluating the distribution (6.15) and gen-
erating samples from it is tractable.
Once the indicators z have been sampled, it remains to sample the component parameters Θ.

The conditional distribution of a component parameter θk depends only on those xn that are
currently assigned to component k by their corresponding indicators zn, i.e.,

p(θk |z) ∝ G0(θk)
∏

n:zn=k
F (xn |θk). (6.16)

– 120 –

6.1 Dirichlet Processes: A Distribution over Distributions

Again due to our conjugacy assumption, the left hand side of (6.16) will be of the same family
as G0 and sampling θk is tractable. By iterating these two steps, sampling the indicators
z conditioned on the component parameters Θ and sampling the component parameters Θ
conditioned on the indicators z, we recover what is called Algorithm 2 in Neal’s paper [195].

Method 2: The second method is an improved version of Method 1, called Algorithm 3 in
[195], and is obtained by marginalizing out the component parameters Θ completely. This
results in a special instance of a collapsed Gibbs sampling algorithm where certain dimensions
are marginalized out to enable faster progress in state space during sampling.22 The resulting
state space contains only the indicator variables z and, therefore, only determines which of the
zn are grouped together without explicitly specifying the component parameters Θ. In this case,
the required conditional distribution for Gibbs sampling is given by

p(Zn = k |z−n) ∝
{
N−n,k

∫
F (xn |θ)p(θ |{xn′ |zn′ = k, n′ 6= n})dθ k ≤ K

αdp
∫
F (xn |θ)G0(θ)dθ k unassigned.

(6.17)

Again by our conjugacy assumption, the resampling probabilities in (6.17) are available in closed
form. Note that if the corresponding component parameters θk are required explicitly, they can
at any time be obtained by sampling θk from the posterior (6.16).

Method 3: The two methods discussed so far are only applicable to conjugate models. The
third method, called Algorithm 8 in [195], is also applicable to the non-conjugate case and
belongs to the category of auxiliary variable samplers. More specifically, the algorithm performs
sampling in a temporarily augmented state space to avoid the computation of the required
integrals and posterior distributions that are generally intractable in the non-conjugate case.
After sampling has finished, the auxiliary variables of the augmented state space are discarded.
The algorithm is provided with a user selected number of auxiliary variables R ≥ 1 and only

requires that we can efficiently generate samples from G0. The first stage of the algorithm
sequentially samples each indicator zn according to the following procedure. Let K−n = |{zn′ :
n′ 6= n}| be the number of components obtained by ignoring sample n and assume that these
components take values in {1, . . . ,K−n}. Note that this potentially requires a relabeling step
if zn is a singleton. The state space is augmented by R auxiliary component parameters Θ̃ =
{θK−n+1, . . . ,θK−n+R} that are currently unassigned. If zn is not a singleton, the auxiliary
component parameters {θK−n+1, . . . ,θK−n+R} are generated by sampling from G0. If zn is a
singleton, the current component parameters θzn are assigned to the first auxiliary component
parameters θK−n+1 and only the remaining R−1 component parameters {θK−n+2, . . . ,θK−n+R}
are sampled from G0. The prior probability mass for unassigned components, αdp, is split evenly
among the R auxiliary parameters.
The new value of zn is then sampled according to

p(Zn = k |z−n,Θ, Θ̃) =
{
N−n,kF (xn |θk) 1 ≤ k ≤ K−n
(αdp/R)F (xn |θk) K−n < k ≤ H,

(6.18)

where we have defined H = K−n+R. After a new value of zn has been sampled, the unassigned
θk are discarded again. As in the algorithms for conjugate models, this procedure allows for the
emergence and disappearance of components in a principled manner.
The second stage of the algorithm samples the component parameters Θ conditioned on

the indicators z. To do so, we sample from the posterior distributions (6.16) based on those
samples xn that are assigned to the same component. However, for the non-conjugate case,

22 Strictly speaking, Algorithm 2 from [195] is also a collapsed Gibbs sampler since the mixture probabilities π
have been marginalized out.

– 121 –

6 Weight Sharing Using Dirichlet Processes

these posterior distributions are generally not of the same form as the base distribution G0.
Therefore, one often must resort to more generally applicable sampling methods such as slice
sampling [65], HMC [69, 70], or any other application-specific update scheme that leaves the
stationary distribution invariant.

The three discussed methods are generally applicable but suffer from some problems that have
been addressed in follow-up work. One major drawback of Gibbs sampling based algorithms that
update only a single indicator zn at a time is that they are prone to getting trapped in bad local
modes if, for instance, different components exhibit similar component parameters. To merge
or split several such components, the incremental nature of Gibbs sampling requires a sequence
of update steps traversing through a highly unlikely region in state space. This issue has been
explicitly addressed by approaches employing split-merge proposals in a Metropolis-Hastings
scheme to make faster progress in state space [201]. However, these methods rely on the exact
computation of specific integrals and, therefore, are typically restricted to the conjugate case.
The DP has been generalized to the hierarchical DP by adding an additional layer to the

hierarchical Bayesian model [202]. Given a set of datasets, the hierarchical DP allows us to
model each of these datasets with its individual unbounded mixture model while allowing some
of the component parameters to be shared among mixture models of different datasets.
Besides sampling based methods, there also exist various approximate inference methods based

on variational inference. For instance, Blei and Jordan [203] proposed a variational inference
algorithm based on the explicit stick-breaking construction. Their approach relies on a truncated
stick-breaking representation of the variational approximation using a fixed maximum number
of components.
In the next Section, we adapt Method 3 (Neal’s Algorithm 8 [195] for non-conjugate models)

to sample assignments of weights to individual connections in a DNN. We also highlight some
specific properties of our DNN model that make the computational complexity of posterior
inference substantially more challenging compared to the case of DP mixtures.

6.2 Dirichlet Process Neural Networks

We assume a Bayesian treatment of DNNs as introduced in Chapter 3. In particular, we assume
a prior distribution over the weights, p(W). The likelihood is specified by the DNN function and
the given task (regression or classification). We refer to Section 3.2.1 for a detailed discussion on
the likelihood defined by a DNN. We note that regression introduces an additional hyperparam-
eter β2 specifying the output variance. We restrict ourselves to fully connected layers and we
assume that biases are included in the weight matrices. Furthermore, we only consider vanilla
architectures as introduced in Section 2.2.1, i.e., we do not use batch normalization or any other
more sophisticated techniques.
To obtain weight sharing, we assume that the weights of the DNN are independently drawn

from a distribution G := p(W) which is itself drawn from a DP with concentration parameter
αdp and base distribution G0. The employed inference algorithm is based on Neal’s Algorithm 8
[195] for non-conjugate models and, therefore, only requires that we can efficiently draw samples
from G0. Throughout this chapter, we assume that G0 is a zero-mean Gaussian with variance
γ2. The extension to arbitrary base distributions is straightforward.
There are essentially two ways to use the DP prior. First, we can assign a DP prior over a

single global weight prior p(W) for the weights in all layers of the DNN. This allows weights
to be shared between different layers of the DNN. Second, we can assign a separate DP prior
over individual layerwise weight priors p(Wl) such that weights are only shared within a layer.
We refer to the former as global sharing and to the latter as layerwise sharing. Throughout

– 122 –

6.2 Dirichlet Process Neural Networks

this chapter we employ layerwise sharing since we empirically observed better results using this
approach.

For layerwise sharing, the model is defined as follows. The weights are given by w =
{w1, . . . ,wL} where wl ∈ RKl stores the Kl currently assigned weights in layer l. The weight
indicators are given by Z = {Z1, . . . ,ZL} where Zl ∈ {1, . . . ,Kl}dl×dl−1 contains the indicators
of all connections in layer l. Note that Kl depends on the indicators Zl and may change over
time. The full weight matrices W̃l of the DNN are recovered as w̃li,j = wl

zli,j
. The number of

connections in layer l is denoted asMl := |Zl| and the overall number of connections in the DNN
is denoted as M := ∑L

l=1Ml. In the context of DNNs, we also call a concrete instantiation of
the weight indicators Z a configuration. The full model with layerwise sharing is summarized as

πl ∼ GEM(αdp) (6.19)
zli,j ∼ Discrete(πl) (6.20)
wlk ∼ G0 := N (0, γ2) (6.21)
yn ∼ p(· |xn,Z,w [, β2]), (6.22)

where the square brackets in (6.22) indicate that β2 is only relevant for regression. The model
is illustrated in Figure 6.1(c). In this chapter, we assume that the hyperparameters αdp, β2 and
γ2 are fixed, but the model can be extended to include priors over them.

6.2.1 Posterior Inference in Dirichlet Process Neural Networks
Posterior inference using the joint distribution of the weights and the configuration p(w,Z |D)
is a challenging task.23 On the one hand, given a fixed configuration, the conditional posterior
over the weights p(w |Z,D) is typically complicated and highly multimodal. On the other hand,
given a fixed set of weights w, there is an intractable number of configurations Z to consider.
Rather than searching for a single assignment of the weights w and the configuration Z, we

propose to use sampling techniques for inference. Our sampling based inference scheme is a block
Gibbs scheme where we alternate between sampling from the posterior of the configuration given
the weights p(Z |w,D) and sampling from the posterior of the weights given the configuration
p(w |Z,D)

Sampling from the Configuration Posterior

To sample from the configuration posterior p(Z |w,D), we adapt Neal’s auxiliary variable Gibbs
sampling scheme for DP mixtures (Algorithm 8 in [195]) that we have discussed in detail as
Method 3 in Section 6.1.2. Note that due to the highly nonlinear likelihood defined by the
output of a DNN, we are restricted to algorithms suitable for non-conjugate models.
To adapt Neal’s algorithm for DP mixtures to our DNN model, we must address several

differences between DP mixtures and our Bayesian DNN model. In a DP mixture model, each
indicator zn is associated to a single sample xn and the overall number of indicators grows with
the number of samples N . The likelihood for each sample xn is independent from the indicators
of the remaining samples z−n. As a result, the conditional distribution over zn (6.18) for Gibbs
sampling only requires the evaluation of the likelihood for the associated sample xn and the
remaining samples can be ignored.
The situation is different for DNNs. Here each indicator zm is associated to a connection of

the DNN. As a result, the overall number of indicators can be considered fixed as it depends

23 Here and in the remainder we will sometimes omit the dependency of distributions on the hyperparameters
αdp, β2, and γ2 for brevity.

– 123 –

6 Weight Sharing Using Dirichlet Processes

Algorithm 8 Sampling the weight indicator zlm (based on Neal’s Algorithm 8 [195])
1: Input: D, z,w, R, αdp, γ

2 [, β2]
2: K−m ← |{zlm′ : m′ 6= m}| # number of components without zlm
3: H ← K−m +R
4: if |{m′ : zlm′ = zlm,m

′ 6= m}| = 0 then # is zlm currently a singleton?
5: Rearrange zl and wl such that zlm = K−m + 1
6: Draw wk ∼ G0(γ2) for K−m + 1 < k ≤ H
7: else
8: Draw wk ∼ G0(γ2) for K−m < k ≤ H
9: end if

10: for k = 1 to H do
11: if k ≤ K−m then
12: ρ← |{m′ : zlm′ = k,m′ 6= m}|
13: else
14: ρ← αdp/R
15: end if
16: pk ← ρ

∏N
n=1 p(yn |xn, z−m, zlm = k,w [, β2])

17: end for
18: p← (p1, . . . , pH)/∑H

k=1 pk
19: Draw zlm ∼ Discrete(p)

on the number of connections M in the given DNN architecture. More importantly, the like-
lihood for each sample (xn,yn) depends on every indicator zm. Therefore, to perform Gibbs
sampling for a particular indicator zm, we must evaluate the likelihood for the entire dataset
D. Although this requires only minor conceptual adaptations to Neal’s algorithm, the implied
practical consequences are severe. In particular, for each connection m and for each currently
assigned weight w ∈ w, the output of the DNN for the whole dataset has to be computed.
This makes the sampling process computationally expensive. As we will see in the remainder,
a careful implementation that exploits structural properties of DNNs is required to obtain a
practical algorithm.
The pseudocode for sampling a single weight indicator zlm for m = (i, j) is shown in Algo-

rithm 8. The weight of connection m is replaced by all of the K−m currently assigned weights
w ∈ w and R ≥ 1 additional auxiliary weights drawn from the base distribution G0 (line 8). In
case connection m is currently assigned a singleton weight, one of the R auxiliary variables is
assigned the current weight wzlm and only R − 1 of them are drawn from G0 (lines 5–6). For
each of the H := K−m +R weight replacements, a conditional probability pk is computed which
is subsequently used to sample the new weight indicator zlm (lines 10–19).
Our algorithm cycles through all connections of the DNN and updates their weight indicators

with Gibbs sampling according to Algorithm 8. In Section 6.2.2 we show approximations and
approaches to avoid many redundant computations.

Sampling from the Weight Posterior

After updating the weight indicators Z for all connections of the DNN, we propose to use HMC
[69, 70] to sample from the conditional distribution of the weights p(w |Z,D). HMC comes with
two advantages. (i) It updates all variables simultaneously rather than sampling the individual
weights in turn as in Gibbs sampling. (ii) It uses gradient information of the log-density to
explore the state space more systematically.
A drawback of plain HMC is that it requires the selection of two parameters, T and η, that are

critical in achieving good performance. This shortcoming is addressed by the AHMC algorithm

– 124 –

6.2 Dirichlet Process Neural Networks

which finds suitable values for T and η automatically [72]. To do so, AHMC performs Bayesian
optimization [204] to maximize the normalized expected squared jumping distance between
consecutive samples.
The conditional density of the weights in our model is proportional to

p(w |Z,D) ∝
N∏
n

p(yn |xn,Z,w [, β2])
L∏
l

Kl∏
k

G0(wlk |γ2). (6.23)

The gradient of the logarithm of (6.23) required for HMC is easily computed using automatic
differentiation. For a detailed discussion on HMC we refer to Section 3.2.4.

6.2.2 Computational Tricks and Inference Complexity
As already mentioned, the computational cost of Algorithm 8 is high. Nevertheless, changing the
weight of a single connection is only a local change to the DNN. In the following, we introduce
techniques to avoid computing a full forward pass each time a weight indicator zm is replaced.

Likelihood Interpolation at Neurons

We introduce an approximation that reduces the number of full DNN evaluations drastically.
The main computational cost of Algorithm 8 arises in line 16 where for each of the H possible
weights a forward pass of the whole dataset is computed. Since a single weight wli,j only influences
the output xli of the neuron to which it is connected, we can view the log-likelihood for the nth

data sample as a function fn(xli(wli,j)). We can precompute the log-likelihood fn(xli) at several
predetermined values xli ∈ Xint and approximate fn(xli(wli,j)) with interpolation rather than
performing a computationally expensive forward pass each time wli,j is replaced. For brevity, we
will omit the subscripts and superscripts in the remainder and only write f(x(w)).

Bounded activation functions: Assume that the activation function of the DNN has a
bounded output with lower bound l and upper bound u. This is true for many commonly used
sigmoidal activation functions such as tanh and sigm. Given a discretization parameter s ≥ 1,
we define a set Xint = {l + k (u − l)/s : k = 0, . . . , s} of s + 1 evenly spaced values between l
and u at which we evaluate the log-likelihood terms fn(x) for all data samples. The parameter
s controls the quality of the approximation; for s→∞ the approximation becomes exact.

ReLU activation function: Dividing the output range of the activation function into evenly
spaced intervals is not possible for common unbounded activation functions such as the ReLU
h(a) = max(0, a). However, we can assume that activations cluster around zero and do not
grow arbitrarily large, assuming that the inputs and the weights are relatively small. For a
given base parameter b > 1, an exponent u ∈ Z, and a discretization parameter s ≥ 1, we define
a set Xint = {0, bu, . . . , bu+s−1} of s+ 1 logarithmically spaced values at which the log-likelihood
terms fn(x) are evaluated. For b=2 and u=−3, we obtain a fine-grained interpolation scheme
in the vicinity of zero, resulting in small interpolation errors in most cases, while still allowing
to capture a large scale of values. Furthermore, this scheme is exact for negative activations a.
In the rare case an activation is larger than maxXint, we propose to use extrapolation.

The number of forward passes with likelihood interpolation reduces from N ·H to N ·(s+1) to
precompute the interpolation coefficients. When sampling a weight indicator zli,j , we interpolate
N values for each of the H weight replacements. For nearest neighbor interpolation, this scheme
has the interpretation as approximating a single activation function by a piecewise constant
function (see Figure 6.2). However, in practice nearest neighbor interpolation is inferior to more

– 125 –

6 Weight Sharing Using Dirichlet Processes

Σ

Σ

Σ

ai xi

zi,j

Figure 6.2: Likelihood interpolation using nearest neighbor interpolation can be seen as approximating a
single activation function by a piecewise constant function. The DNN function is precomputed
for every possible output xi of the piecewise constant function and the results are stored in a
lookup table. The lookup table is then reused to sample all (red) indicators zi,j feeding into neuron
i, avoiding many expensive forward passes. Note, however, that nearest neighbor interpolation
yields inferior results compared with linear and cubic interpolation.

sophisticated interpolation schemes. We propose to use cubic interpolation [205] which requires
a memory overhead of O(N ·s) to store interpolation coefficients.

Gibbs Cycling Order

By using a specific order when cycling through the weight indicators zli,j , we can keep the
computational overhead manageable. First, we propose to sample one layer at a time, beginning
with the first layer and progressing towards the last layer. Sampling a layer at a time has the
advantage that the computation of the DNN up to previous layers stays unaffected and only
needs to be computed once. Next, we propose to iterate through neurons i of the subsequent
layer and to sample all connections (i, j) feeding into neuron i before progressing to another
neuron i′ 6= i. This allows us to reuse the precomputed interpolation coefficients for all weight
indicators zli,j feeding into neuron i and to avoid many unnecessary forward passes.
Using likelihood interpolation and an appropriate Gibbs cycling order is crucial in order to

make sampling from the posterior p(Z |w,D) tractable. However, the need to use approximations
also makes it hard to assess the impact of likelihood interpolation on the quality of the samples.
In our experiments we found s = 10 to yield good results for both tanh and ReLU.

Incremental Activation Updates

The following method does not affect the number of forward passes but is worth considering
for an efficient implementation of the configuration sampling algorithm. Consider updating
weight indicator zli,j where neuron j is an input and neuron i is an output of layer l. Let
ali,old be the activation of neuron i before applying the activation function h. When the current
weight wold is replaced by a new weight wnew, the activation can be computed as ali,new =
ali,old + xl−1

j (wnew − wold). The activation function can then be applied to the updated value
ali,new of the neuron. This avoids recomputing the sum of all inputs to neuron i and produces
the new output xli,new in constant time.
Next, assume that l < L and there exists another layer l + 1 to which neuron i is an input.

An obvious, yet important, observation is that the outputs ali′ of other neurons i′ 6= i in layer l
are unaffected by changing the weight of connection (i, j). This implies that the activations in
the next layer can be updated as al+1

k,new = al+1
k,old + wl+1

k,i (xli,new − xli,old) for all neurons k in the
next layer. This reduces the computational effort of computing a forward pass from layer l to
layer l+ 1 from a matrix-vector multiplication to a cheaper incremental update. However, from

– 126 –

6.3 Experiments

layer l + 1 to layer L, a full forward pass is necessary.

Running Time of Posterior Sampling

Since the running time of Algorithm 8 is largely determined by computing forward passes in the
DNN, our analysis is restricted to counting the number of forward passes. Let H̄ be the average
number of weight replacements per connection. When implementing Algorithm 8 naïvely, the
number of forward passes to sample all connections in layer l isO(N ·dl−1·dl ·H̄). Using likelihood
interpolation reduces the number of forward passes per connection from H̄ to constant s + 1.
Moreover, using the proposed Gibbs cycling order we can reuse the interpolation coefficients for
all dl−1 connections feeding into a neuron. This results in O(N · dl · s) forward passes in total.

6.3 Experiments
We compare the performance of several models. We performed MAP training for plain feed-
forward DNNs using the L-BFGS24 quasi-Newton algorithm [49]. We did not perform stochastic
mini-batch optimization since for sampling our main focus is on HMC which does not use mini-
batches either. We used tanh (BFGS Tanh) and ReLU (BFGS ReLU) activation functions. We
evaluated one and two hidden layers with dl ∈ {50, 100, 250, 500, 1000} hidden neurons. For two
hidden layers we set d1 = d2. We optimized the weight variance γ2 ∈ {10−2, 10−1, . . . , 102} and
selected random initial weights drawn from N (0, 10−2).
We evaluated Bayesian DNNs without weight sharing (BNN). We generated 5,000 sets of

weights (i.e., 5,000 DNNs) with AHMC after discarding the first 200 DNNs as burn-in. We
evaluated one and two hidden layers for dl ∈ {50, 100} and set d1 = d2 in case of two hidden
layers. We optimized the weight variance γ2 ∈ {10−2, 10−1, 100} and initialized AHMC with a
mode from the posterior distribution. The upper and lower bounds of AHMC used for Bayesian
optimization were set to bTl = 1 and bTu = 250 for T and bηl = 10−6 and bηu = 10−1 for η. For
more details on these parameters the interested reader is referred to [72].
For our model (DP BNN), we evaluated the same DNN structures and the same prior variance

γ2 as for BNNs. We evaluated the DP parameter αdp ∈ {100, 101, 102, 103}. We randomly ini-
tialized the weight configuration using a CRP with parameter αdp and performed 100 iterations
of configuration sampling as burn-in. This adapts the configuration to the given data and results
in better performance than starting from a random configuration. The weights were randomly
initialized by sampling from N (0, γ2). Then we generated 200 DNNs with AHMC followed by
24 iterations of alternating between sampling all weight indicators according to Algorithm 8 and
sampling 200 sets of weights with AHMC.25 This setting requires us to store only 25 config-
urations and for each configuration the 200 different sets of weights, resulting in an ensemble
of 5,000 DNNs. We fixed the number of auxiliary variables R = 100 and the discretization
parameter s = 10 for all experiments.

We also performed experiments with randomly shared weights (RND BNN). For each DNN
structure, we generated 25 random configurations with the same number of weights as in the
best performing DP BNN experiment. For each of the 25 configurations, we performed 400
iterations of AHMC and discarded the first 200 DNNs as burn-in, resulting in an overall number
of 5,000 DNNs.
For regression, we also trained DNNs with dropout [9]. We used the same DNN structures

as for BNNs. We evaluated the dropout probabilities pdo ∈ {0.005, 0.01, 0.05, 0.1}, the weight

24 The BFGS method is named after its inventors Broyden, Fletcher, Goldfarb, and Shanno, and the L stands
for limited-memory.

25 AHMC actually generated 400 sets of weights but the first 200 were used as burn-in and for finding suitable
HMC parameters, T and η, with Bayesian optimization.

– 127 –

6 Weight Sharing Using Dirichlet Processes

1 1,000 2,000 3,000 4,000 5,000
0

5

10

15

#averaged samples

C
la

ss
ifi

ca
ti

on
er

ro
r

[%
]

Train
Validation

Test

(a) MNIST-rot

100 101 102 103

102

103

104

αdp

R
u
n
n
in
g
ti
m
e
[s
]

AHMC

SGMCMC

z,s = 10
z,s = ∞

(b) MNIST-rot-bg

Figure 6.3: (a) Classification error [%] over number of averaged samples for DP BNN ReLU on MNIST-rot.
(b) Average running time over αdp on MNIST-rot-bg. We evaluated weight sampling (200 weight
sets) using AHMC and SGMCMC. The running time differences between SGLD and SGHMC
(shown as SGMCMC) are negligible. For configuration sampling (z), we evaluated a single Gibbs
cycle for two values of s (s =∞ corresponds to likelihood interpolation not being used).

decay γdo ∈ {10−5, 10−4, . . . , 101}, and the output variance β2 ∈ {10−2, 10−1}. The models were
optimized using ADAM [11] with mini-batches of 100 samples. The step size is set to 10−3 and
multiplied by 0.999 after every epoch. For the dropout experiments, the likelihood term of the
objective is normalized by the number of samples N . As a result, the weight decay γdo has a
different interpretation compared to the prior weight variance γ2 of BFGS optimized models, i.e.,
1/γ2 = Nγdo. As mentioned in [30], we can obtain predictive uncertainties for the DNN output
by sampling several DNNs according to the dropout probabilities pdo. In our experiments, we
sampled 5,000 DNNs.

6.3.1 Classification Results
For classification, we performed experiments on the MNIST dataset (see Appendix A.1) and
variants of the MNIST dataset (see Appendix A.2). We whitened the data by transforming
the input features with principal component analysis (PCA) to 50 dimensions as in [206] and
normalizing the PCA features to zero mean and unit variance.
The best mean classification errors over five runs for each model are summarized in Table 6.1.

The results are clearly in favor of the ReLU activation function. Nevertheless, we emphasize that
DP BNN outperforms their RND BNN counterparts for both tanh and ReLU on most datasets.
BFGS optimized DNNs achieve the best results only on MNIST-basic. We emphasize that the
BFGS experiments favored larger models which we did not evaluate for the BNN models. In
particular, on all datasets at least either BFGS Tanh or BFGS ReLU used the largest structure
with two hidden layers and 1,000 neurons.
Interestingly, for tanh, DP BNN even outperforms BNN on four out of six datasets. This

indicates that weight sharing has a regularizing effect on the DNNs, preventing them from over-
fitting. Moreover, due to weight sharing, AHMC can sample in a lower-dimensional space which
might improve the quality of the generated samples. Figure 6.3(a) shows how the classification
error of a DP BNN ReLU with two hidden layers of 100 neurons evolves as the number of aver-
aged DNN samples grows. The steep decrease at the beginning indicates a good decorrelation
between consecutive samples.

– 128 –

6.3 Experiments

Tanh ReLU
Dataset BFGS BNN RND BNN DP BNN BFGS BNN RND BNN DP BNN
MNIST 1.74 ± 0.03 1.70 ± 0.02 1.78 ± 0.04 1.63 ± 0.03 1.55 ± 0.04 1.44 ± 0.04 1.70 ± 0.03 1.46 ± 0.06
MNIST-basic 4.13 ± 0.09 4.43 ± 0.07 4.82 ± 0.02 4.15 ± 0.05 3.50 ± 0.07 3.75 ± 0.02 3.74 ± 0.03 3.83 ± 0.06
MNIST-bg 21.42 ± 0.25 17.60 ± 0.05 18.28 ± 0.03 18.03 ± 0.10 18.69 ± 0.17 16.55 ± 0.05 17.51 ± 0.03 17.08 ± 0.03
MNIST-bg-rnd 9.25 ± 0.04 8.88 ± 0.03 9.27 ± 0.02 8.28 ± 0.03 8.31 ± 0.08 7.64 ± 0.01 7.89 ± 0.04 7.94 ± 0.07
MNIST-rot 11.74 ± 0.14 11.49 ± 0.12 12.19 ± 0.05 11.06 ± 0.07 13.93 ± 0.10 10.41 ± 0.38 13.74 ± 0.07 10.84 ± 0.14
MNIST-rot-bg 48.47 ± 0.24 41.41 ± 0.06 43.43 ± 0.09 42.98 ± 0.14 48.15 ± 0.41 39.44 ± 0.16 45.78 ± 0.10 42.33 ± 0.36

Table 6.1: Average test classification errors [%] and standard deviations over five runs on MNIST and
variants thereof.

Tanh ReLU
Dataset BNN RND BNN DP BNN Dropout BNN RND BNN DP BNN
Abalone -2.223 ± 0.021 -2.212 ± 0.024 -2.199 ± 0.018 -2.238 ± 0.031 -2.734 ± 0.048 -2.652 ± 0.038 -2.226 ± 0.020
Housing -2.276 ± 0.031 -2.412 ± 0.027 -2.271 ± 0.032 -2.449 ± 0.045 -2.442 ± 0.024 -2.437 ± 0.025 -2.363 ± 0.089
Concrete -2.727 ± 0.121 -2.828 ± 0.104 -2.723 ± 0.131 -2.978 ± 0.020 -2.903 ± 0.096 -2.881 ± 0.074 -2.731 ± 0.137
Power Plant -2.847 ± 0.007 -2.859 ± 0.007 -2.848 ± 0.009 -2.837 ± 0.005 -2.859 ± 0.007 -2.865 ± 0.008 -2.860 ± 0.008
WineQ-red -0.682 ± 0.020 -0.577 ± 0.094 -0.650 ± 0.075 -1.156 ± 0.045 -0.984 ± 0.035 -0.942 ± 0.029 -0.833 ± 0.021
WineQ-white -0.786 ± 0.021 -0.909 ± 0.017 -0.780 ± 0.016 -1.154 ± 0.030 -1.544 ± 0.059 -1.273 ± 0.034 -0.947 ± 0.027

Abalone 2.397 ± 0.034 2.204 ± 0.018 2.326 ± 0.020 2.157 ± 0.051 2.654 ± 0.364 2.123 ± 0.025 2.446 ± 0.057
Housing 2.940 ± 0.158 3.108 ± 0.192 2.946 ± 0.163 3.019 ± 0.158 2.902 ± 0.133 2.906 ± 0.136 2.792 ± 0.137
Concrete 3.998 ± 0.106 4.267 ± 0.144 4.003 ± 0.117 4.787 ± 0.164 4.487 ± 0.175 4.521 ± 0.182 4.076 ± 0.214
Power Plant 3.647 ± 0.052 3.757 ± 0.057 3.659 ± 0.070 3.676 ± 0.061 3.764 ± 0.055 3.811 ± 0.057 3.771 ± 0.063
WineQ-red 0.613 ± 0.011 0.617 ± 0.012 0.619 ± 0.015 0.616 ± 0.014 0.698 ± 0.018 0.675 ± 0.021 0.661 ± 0.017
WineQ-white 0.623 ± 0.011 0.658 ± 0.012 0.623 ± 0.009 0.648 ± 0.009 0.732 ± 0.015 0.671 ± 0.011 0.681 ± 0.012

Table 6.2: Average test log-likelihoods and standard deviations (top) and average test root mean squared
errors and standard deviations (bottom) on various UCI regression datasets obtained using 5-fold
cross-validation.

Dataset DP BNN SGLD ReLU DP BNN SGHMC ReLU
MNIST 1.49 ± 0.05 1.48 ± 0.05
MNIST-basic 3.85 ± 0.11 3.82 ± 0.07
MNIST-bg 17.22 ± 0.10 17.17 ± 0.12
MNIST-bg-rnd 8.00 ± 0.06 7.99 ± 0.05
MNIST-rot 10.92 ± 0.11 10.98 ± 0.23
MNIST-rot-bg 41.43 ± 0.10 41.61 ± 0.12

Table 6.3: Average test classification errors [%] and standard
deviations over five runs of stochastic MCMC meth-
ods for weight sampling. We evaluated SGLD and
SGHMC.

Dataset N d0
Abalone 4,177 8
Housing 506 13
Concrete 1,030 8
Power Plant 9,568 4
WineQ-red 1,599 11
WineQ-white 4,898 11

Table 6.4: Regression datasets:
Number of data sam-
ples N and number of
input features d0.

6.3.2 Classification Results with Stochastic Gradient MCMC

We replicated the experiments for DP BNN from Section 6.3.1 but replaced AHMC for weight
sampling with SGLD [102] and SGHMC [103]. We refer to Section 3.5 for details about stochastic
sampling methods and their corresponding parameters. We used mini-batches of size NB = 100.
For SGLD, we updated the step size ηt according to (3.116) after every epoch where t is the
current epoch. For the hyperparameters of (3.116), we evaluated βη ∈ {101, 102, 103} and fixed
αη = 10−3 and γη = 0.55. For SGHMC, we evaluated the step size η ∈ {10−7, 10−6} and fixed
the momentum term ξ = 0.1. To keep the computational overhead of both methods equal, we
generated a weight sample after every epoch. This implies that parameter T of SGHMC equals
the number of update steps per epoch.
The results are shown in Table 6.3. We only report results for ReLU as it outperformed tanh.

Both methods, SGLD and SGHMC, achieve a similar performance and are on par with AHMC
(see Table 6.1). On some datasets, AHMC benefits from the automatic search for good leapfrog
parameters whereas on other datasets the stochastic methods benefit from the stochasticity of
the gradients. Nevertheless, stochastic gradient sampling methods are crucial for a scalable
algorithm, but this is not the main focus of this work.

– 129 –

6 Weight Sharing Using Dirichlet Processes

100 101 102 103

20

25

30

35

40

αdp

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

DP BNN ReLU
RND BNN ReLU

0

10

20

30

#
w

ei
gh

ts
[%

]

DP BNN ReLU
RND BNN ReLU

#weights [%]

(a) MNIST-bg

100 101 102 103
0

10

20

30

40

50

60

70

αdp

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

DP BNN Tanh sample
RND BFGS Tanh

0

10

20

30

40

50

#
w

ei
gh

ts
[%

]

DP BNN Tanh sample
RND BFGS Tanh

#weights [%]

(b) MNIST-basic

Figure 6.4: (a) Test classification error (left y-axis) and fraction of used weights compared to DNNs without
sharing (right y-axis) over αdp for DP BNN ReLU and RND BNN ReLU with two hidden layers
of 100 neurons. (b) Test classification errors and fraction of used weights of BFGS optimized
DNNs with random weight sharing and posterior samples of DP BNNs using tanh.

6.3.3 Regression Results

For regression, we used several datasets from the UCI repository (see Appendix A.7). The
number of data samples N and the number of input features d0 for each dataset are summarized
in Table 6.4. The task of each dataset is to predict a scalar target value. For all DNN models, we
evaluated β2 ∈ {10−2, 10−1}. All features and target values were normalized to zero mean and
unit variance. We performed 5-fold cross-validation and report the test log-likelihood and the
test root mean squared error (RMSE) without target normalization. Note that we report both
the log-likelihood and the RMSE of the same model resulting in the best test log-likelihood.
The results are shown in Table 6.2. For dropout, we only report results for the ReLU activation

function (Dropout ReLU) as it outperformed tanh on average. For the BNN models, tanh
performed better on these tasks. DP BNN Tanh achieved the best log-likelihood on four out
of six datasets. Furthermore, DP BNN for both Tanh and ReLU consistently outperform their
RND counterparts except for WineQ-red where RND BNN Tanh performs best. This is due
to outliers that are by chance well captured by 1–2 DNNs of the ensemble of 5,000 DNNs for
RND BNN Tanh, whereas these outliers are poorly captured by the other methods. For the
RMSE, BNN Tanh performed best on four out of six datasets. The DP models also outperform
Dropout and their RND counterparts in terms of RMSE on most datasets. We emphasize that
the log-likelihood was used to select the models and we report the RMSE for the same models.

6.3.4 Reducing the Number of Weights

On the MNIST datasets, at most 50% of the weights were used for αdp = 103. For the largest
evaluated structure with two hidden layers and d1 = d2 = 100, at most 30% of the weights were
used. The savings grow with larger structures as the number of weights depends logarithmi-
cally on the number of connections [200]. The additional memory needed to store 25 sharing
configurations is relatively small compared to the total number of 5,000 DNN samples.
The concentration parameter αdp can be used to trade off between the number of weights

and the classification error. Figure 6.4(a) shows the influence of αdp on both the classification
error and the number of weights for the ReLU activation with two hidden layers having 100
neurons each on MNIST-bg. By setting αdp = 1, only about 0.3% of the weights are used and
the classification error increases by approximately 3% (absolute). Using our setup of 200 weight

– 130 –

6.3 Experiments

samples per configuration, a total overhead of 0.5% to store the configuration is added and thus
the overall memory requirement per single DNN is 0.8% compared to BNNs without sharing.

6.3.5 Benefit over Random Weight Sharing
The next experiment compares configurations identified by our sampling method with randomly
shared weights on MNIST-basic. We used DNNs with tanh activation and two hidden layers
with 50 neurons each. For several values of αdp, we performed 200 iterations of configuration
sampling, dropped the first 100 samples as burn-in, and averaged the errors of the individual
samples. This experiment was performed five times, resulting in 500 samples. To show that
configuration sampling by itself finds suitable configurations, we did not perform any weight
sampling. For comparison, we initialized for each αdp five DNNs with random sharing using the
same number of weights as obtained by configuration sampling and trained them using BFGS.
The average test error is shown in Figure 6.4(b). The average error of a single DP BNN

posterior sample is almost constant for all αdp values whereas the error of DNNs with random
weight sharing drops consistently as more and more weights are used. Especially when only few
weights are used, DP BNNs outperform DNNs with random weight sharing. Without weight
sharing, the best error with BFGS is 5.7%. This is about 1.5% better than the error of a single
DP BNN posterior sample using only few weights.
Next we compare the full ensemble performance of 5,000 DNNs on MNIST-bg. In particular,

we use two hidden layers with 100 neurons each and compare our standard setup (DP BNN
ReLU) with randomly shared weights (RND BNN ReLU). The results for several αdp are shown
in Figure 6.4(a). Especially when αdp is small and only few weights are used, random weight
sharing achieves a poor performance.

6.3.6 Running Time Experiments
We compared the running time of configuration sampling and weight sampling for different αdp
values on MNIST-rot-bg. We used two layers with 100 hidden neurons each. Since the number
of weights depends largely on αdp and the network structure and the variants of MNIST are all
of equal size, the running time varies only slightly among these datasets.
The results are shown in Figure 6.3(b). The running times of SGLD and SGHMC are ap-

proximately equal and we therefore report their running times as SGMCMC. The running time
for weight sampling with AHMC and SGMCMC is largely unaffected by αdp since computing
gradients with backpropagation is mainly affected by the DNN structure and not by the number
of used weights. However, since configuration sampling requires each connection to be replaced
by all existing weights, its running time grows with larger αdp. Without likelihood interpolation
the algorithm takes up to two orders of magnitudes longer which is impractical. The SGMCMC
methods provide a speed-up of about one order of magnitude compared to AHMC, shifting the
computational bottleneck for all αdp values to configuration sampling.

6.3.7 Different Interpolation Methods
Figure 6.5(a) and Figure 6.5(b) show qualitative examples of likelihood interpolation for tanh and
ReLU, respectively. For both activation functions, linear and cubic interpolation [205] provide
a much better fit to the ground truth than simple nearest neighbor interpolation. For tanh, the
smooth cubic interpolation scheme provides a slightly better fit than linear interpolation since the
ground truth fn(x) is also smooth. For the non-smooth ReLU activation, fn(x) is non-smooth
whenever activations in the following layers change their sign. This behavior occurs especially
for large x where our grid of ground truth values is relatively coarse such that interpolation
becomes difficult.

– 131 –

6 Weight Sharing Using Dirichlet Processes

−1 −0.5 0 0.5 1

−8

−6

−4

−2

0

x

f n
(x
)

True
Nearest neighbor

Linear
Cubic

(a) tanh

0 1 2 3 4 5

−4

−3

−2

−1

0

x

f n
(x
)

True
Nearest neighbor

Linear
Cubic

(b) ReLU

100 101 102

5

10

15

s

C
la

ss
ifi

ca
ti

on
er

ro
r

[%
]

Train
Validation

Test

(c) MNIST-bg-rnd

Figure 6.5: Likelihood interpolation. (a) Exemplary log-likelihood fn(x) for a single sample (xn,yn) as a
function of a specific neuron’s output x with tanh activation. The likelihood is evaluated exactly
at the black circles which are subsequently used for interpolation. The true function (black dotted)
is shown together with three interpolation schemes. (b) Same as in (a) for the ReLU activation.
(c) Classification errors (averaged over five runs) for several discretization parameters s. The
results were produced by averaging an ensemble of ten DNNs obtained by configuration sampling
using nearest neighbor likelihood interpolation (no weight sampling).

We note that for regression a continuous interpolation scheme (linear or cubic) is crucial, and
nearest neighbor interpolation produced inferior results (results not reported). This behavior
was hardly observable for classification. This is explained by the fact that regression requires a
precise prediction of a numerical target value which makes it more susceptible to approximation
errors. Classification, on the other hand, is more robust since it only requires the correct
prediction of the maximum class.

6.3.8 Influence of the Discretization Parameter

To assess the impact of likelihood interpolation on the quality of the generated samples, we eval-
uated several values of the discretization parameter s on MNIST-bg-rnd for two hidden layers
with 50 neurons each. We performed 20 iterations of configuration sampling with nearest neigh-
bor likelihood interpolation, discarded the first ten samples as burn-in, and averaged the outputs
of the last ten DNNs. The average classification error and the standard deviation of performing
this experiment five times is shown in Figure 6.5(c). The error drops consistently until s = 10
and then stays almost constant until s = 100. We note that running the experiment without
likelihood interpolation takes too long but s = 100 gives already a good approximation. More
accurate approximations using larger s do not seem to pay off for the increased computational
effort.
For linear and cubic interpolation or when performing the same experiment with intermediate

runs of weight sampling using AHMC, the error is approximately constant over the whole range
of s showing that the influence of s is even less severe.

6.4 Discussion

In this chapter, we introduced a DP prior over the weight prior distribution p(W). This results
in a weight sharing which we subsequently exploit to reduce the memory footprint of storing
an ensemble of DNNs. As opposed to common clustering techniques that operate solely on the
weight values, our method results in a weight sharing that is adopted to the given data.

– 132 –

6.4 Discussion

We infer the weight sharing using block Gibbs sampling, i.e., we alternate between sampling
from the conditional posterior over the weights, p(w |Z,D), and sampling from the conditional
posterior over the configurations, p(Z |w,D). Weight sampling is performed using AHMC and
configuration sampling is performed using Gibbs sampling. By using a faster stochastic gradient
MCMC method for weight sampling, configuration sampling becomes the computational bottle-
neck. For each configuration Z, we generate multiple weight samples w in order to distribute
the memory overhead for the configurations over many samples.
Since sampling from p(Z |w,D) naïvely is intractable, we developed an interpolation based

approximation that takes the structure of DNNs into account. This approximation avoids many
redundant computations and makes posterior sampling feasible. A relatively small discretiza-
tion parameter of s = 10 was sufficient for interpolation to perform well. Cubic interpolation
produced good results for both classification and regression as well as for both tanh and ReLU
activation functions.
In our experiments, we demonstrated the ability of our model to reduce the total number of

parameters substantially. Our model mostly outperforms Bayesian DNNs with random weight
sharing. On some datasets (especially for regression), our model even outperforms DNNs without
sharing. This indicates a regularizing effect of weight sharing. We have shown that by varying
the concentration parameter αdp of the DP, we can effectively trade off between model size
and accuracy. However, note that selecting a larger αdp considerably increases the running
time of configuration sampling. Especially in the small αdp regime, our method substantially
outperforms randomly shared weights.
Experiments using layerwise weight sharing consistently outperformed global weight sharing.

One reason could be that different layers need to exhibit different weight scales, and sharing
weights among different layers deteriorates performance. For instance, in a different context
the He initialization (2.32) and (2.33) uses different layerwise weight scales for initialization to
substantially improve convergence of optimization [20].

6.4.1 Limitations and Future Work

Although the proposed method provides an elegant framework to obtain weight sharing in DNNs,
it suffers from several drawbacks that limit its practical applicability. First and foremost, the
proposed method is restricted to smaller architectures and small to medium sized datasets. We
note that the current work was developed with the constraint of introducing as little bias as
possible. In particular, the interpolation based approximation is the only component introduc-
ing bias. However, this constraint is too restrictive and trading bias for increased computational
efficiency might be key to obtain a scalable method. We believe that low order Taylor approxi-
mations of the likelihood similar as in [83] are promising to achieve this.

Furthermore, extensions to other DNN architectures such as CNNs and RNNs need to be
considered. However, the proposed interpolation method cannot be applied to these architectures
since changing individual weights of CNNs and RNNs affects several neurons. Again, low order
Taylor approximations might be promising solutions. Nevertheless, we note that the proposed
method can be readily used for the fully connected layers of CNNs where commonly most of the
weights are located.
In its present form, our method is tailored to reducing the number of parameters of an ensemble

of DNNs. Exploring different ways to reduce the memory footprint of individual DNNs by means
of DP based weight sharing is worthy of investigation. We believe that, once the computational
challenges have been solved and a scalable algorithm has been developed, the proposed method
might be a viable alternative to other clustering based sharing techniques. For instance, a core
component of the work of Han et al. [144] is k-means. It would be interesting to see whether
a clustering that also takes the given data into account is beneficial. It is also conceivable that
DP based weight sharing could serve to fine-tune a previously determined weight sharing.

– 133 –

6 Weight Sharing Using Dirichlet Processes

In the current version of our method, the model hyperparameters αdp, β2, and γ2 are fixed.
We leave a Bayesian treatment considering hyperpriors over them to future work. This could
be an important step towards reducing the influence of the tunable hyperparameters.

– 134 –

Probabilistic Methods for Resource Efficiency in Machine Learning

7
Resource-Efficient Bayesian Network Classifiers

So far, this thesis was mostly devoted to DNNs and techniques to improve their computational
efficiency. Most of the literature (see Section 4) considers medium to large-scale datasets that
require a moderate architecture size to achieve a decent accuracy. As a consequence, also the
resulting DNNs after applying the respective methods are still too large for resource-constrained
devices. For some applications, it is necessary that the underlying architecture is extraordinarily
small or a different, more resource-efficient model class is employed in the first place.

Because of this, we aim to answer the question whether it is possible to transfer techniques
from the recent DNN literature to such a different model class. In particular, we consider
BN classifiers with naïve Bayes or TAN structure for the case of discrete input features. BN
classifiers are inherently efficient in that they require very few operations to compute predictions.
For datasets with C classes and D discrete input features, a BN classifier efficiently computes
predictions by accumulating (D + 1) · C log-probabilities and determining the most probable
class. Notably, no other operations, such as multiplications, are required.
In this chapter, we adapt two particular techniques from the deep learning literature to BN

classifiers. The first technique is a structure learning method to discover small BNs that achieve
high accuracy. While tuning DNN structures has long relied on manual efforts in order to
achieve high accuracy, the field of NAS for the automatic discovery of DNN architectures has
become an active research area just very recently. Importantly, many NAS techniques for DNNs
incorporate a mechanism that allows us to take resource efficiency into account. As a result,
these methods find structures that do not only perform well in terms of accuracy, but which
are also efficient in terms of various resource efficiency metrics. We refer to Section 4.3.5 for a
thorough overview of NAS methods for DNNs.
At the core of most NAS methods, the architecture of a DNN is viewed as a graph and

the task is to find how the nodes in this graph are connected to each other. This suggests
that NAS techniques might be applicable to BNs since their structure is also a graph. The
method we are going to present is based on differentiable NAS methods [184, 187]. Differentiable
methods are appealing as they enable us to train the parameters and the structure of a DNN
according to the same discriminative criterion through gradient-based optimization without
requiring combinatorial search heuristics.
To be more precise, we propose a differentiable approach for TAN structure learning of BN

classifiers. Our method assumes a fixed variable ordering and is based on a relaxation of the
discrete graph structure to a discrete distribution over graph structures. Given a differentiable
loss L over the BN parameters, we formulate a new structure learning (SL) loss LSL = E[L]
as an expected loss with respect to this distribution over graph structures. Subsequently, the
structure loss LSL is jointly optimized for the BN parameters and the continuous distribution
parameters for the graph structures using gradient-based learning. After learning, we select the
most probable structure. This allows us to perform structure learning using commonly used
discriminative criteria such as the conditional likelihood or the probabilistic margin [207]. In
fact, the proposed method is agnostic to the specific loss and only requires that it is differentiable.
To also accommodate for the model size, we introduce an additional loss term that penalizes
the number of parameters of a specific TAN structure. This allows us to effectively trade off
between accuracy and model size.

– 135 –

7 Resource-Efficient Bayesian Network Classifiers

Our second method performs quantization-aware training of the BN parameters using the STE.
During training, our quantization method maintains a set of real-valued auxiliary parameters θ
that are quantized to few bits during forward propagation to obtain θq. During backpropagation,
the gradient is computed with respect to the quantized parameters θq which is then passed
“straight-through” to update the real-valued parameters θ. This procedure is typically more
effective than performing quantization as a post-processing step, since the real-valued parameters
θ become robust to quantization during training. After training, the model is deployed using
the quantized parameters θq. This paradigm has been widely used for quantization in the deep
learning literature and we refer to Section 4.1.2 for a comprehensive review of these methods.
We perform extensive experiments using a hybrid generative-discriminative loss based on the

probabilistic margin [207]. Our structure learning method consistently outperforms random TAN
structures and likelihood optimized Chow-Liu TAN structures [208] on all evaluated datasets by
a large margin. We show that a heuristic variable ordering for image data based on pixel locality
further improves performance. We demonstrate that by incorporating a model size penalty into
our objective, we can generate a trajectory of Pareto optimal BN classifiers with respect to
accuracy and model size.
Moreover, we show in extensive experiments that quantization-aware training is an effective

and simple method for quantization in BN classifiers. We compare our quantization method
with a specialized branch-and-bound approach that directly operates on the discrete parameter
space of BNs [209]. Our quantization method does not only achieve higher accuracy, but it also
takes much less training time than the computationally intensive branch-and-bound algorithm.
We also contrast quantized BN classifiers with small-scale quantized DNNs with respect to

(i) model size, (ii) number of operations required for predictions, and (iii) the prediction ac-
curacy. We investigate Pareto optimal models with respect to these three dimensions and find
that no model class can be excluded a priori. Quite importantly, our analysis also shows that
quantization-aware training of DNNs performs well for small architectures and small datasets.
This is notable since most work on DNN quantization is mainly focusing on the large-scale
setting and the small-scale setting has been rarely investigated in the literature.
This chapter is largely based on our papers “Differentiable TAN Structure Learning for

Bayesian Network Classifiers” presented at the PGM conference in 2020 [189] and “On Resource-
Efficient Bayesian Network Classifiers and Deep Neural Networks” presented at the ICPR con-
ference in 2021 [134].26

The outline of this chapter is as follows. Section 7.1 introduces the necessary background.
This includes BNs with a particular focus on classification, a brief overview of generative and dis-
criminative training for probabilistic classifiers, and related structure learning work. Section 7.2
presents our differentiable TAN structure learning approach. Quantization-aware parameter
learning for BNs is introduced in Section 7.3. The experiments for structure learning and quan-
tization are presented in Section 7.4 and Section 7.5, respectively. We discuss our findings in
Section 7.6.

7.1 Bayesian Network Classifiers
Note that BNs have already been introduced in Section 3.1.2, but for this chapter to be more self-
contained, we review the basic concepts again here. Let X = {X1, . . . , XD} be a multivariate
random variable. A BN is a graphical representation of a probability distribution p(X) as a
directed acyclic graph G whose nodes correspond to the random variables Xi. More specifically,
the graph G determines a factorization of p(X) according to

p(X) =
D∏
i=1

p (Xi | pa(Xi)) , (7.1)

26 The conference is actually termed ICPR 2020 but was postponed to 2021 due to the COVID-19 pandemic.

– 136 –

7.1 Bayesian Network Classifiers

where pa(Xi) is the set of parents of Xi in G. This factorization allows us to specify the
full joint distribution p(X) by the individual factors p(Xi | pa(Xi)). We consider distributions
over discrete random variables such that each conditional distribution p(Xi | pa(Xi)) can be
represented as a conditional probability table (CPT) θi|Ji , where Ji = {j : Xj ∈ pa(Xi)} are the
indices of Xi’s parents. The joint distribution p(X) is then specified by the collection of CPTs
θG = {θ1|J1 , . . . ,θD|JD} of all random variables X.

When considering the task of classification in particular, we are given an additional class
random variable Y and assume that a BN is used to model the joint distribution p(X, Y). In
this context, the variables X are called input features. We can then construct a probabilistic
classifier by assigning an input x to the conditionally most probable class

ŷ = argmax
y

p(y |x) = argmax
y

p(x, y) = argmax
y

log p(x, y). (7.2)

Assuming that the individual factors of (7.1) can be computed efficiently, classification according
to (7.2) is particularly convenient by accumulating only D + 1 log-probabilities

log p(X, Y) = log p (Y | pa(Y)) +
D∑
i=1

log p (Xi | pa(Xi)) (7.3)

for each class y ∈ {1, . . . , C} and reporting the most probable class ŷ.
However, the situation becomes problematic concerning the size of the CPTs θi|Ji which

is determined by the number of values that Xi and pa(Xi) can take jointly. Consequently,
assuming that each random variable Xi can take at least two values, the size of Xi’s CPT
grows exponentially with the number of parents | pa(Xi)|. This can become a computational
bottleneck even for few parents. Therefore, it is desirable to maintain graph structures where
each node has few parents such that inference tasks remain feasible. In this paper, we consider
two commonly used types of structures for BN classifiers, namely the naïve Bayes structure and
TAN structures. These structures restrict the number of conditioning parents and, therefore,
do not suffer from the exponential growth.

7.1.1 Naïve Bayes and Tree-Augmented Naïve Bayes (TAN) Structures

The naïve Bayes structure is illustrated in Figure 7.1(a). The graph G contains a single root
node Y which is the sole parent of each feature node Xi. The factorization induced by the naïve
Bayes assumption is given by

p(X, Y) = p(Y)
D∏
i=1

p (Xi |Y) . (7.4)

The naïve Bayes model assumes that all inputs X are conditionally independent given the class
Y . Although this independence assumption rarely holds in practice, naïve Bayes models often
perform reasonably well while requiring only few parameters and enabling fast inference.
The TAN structure generalizes the naïve Bayes structure by allowing each feature Xi—in

addition to the class variable Y—to directly depend on at most one other feature Xj . An
example TAN structure is illustrated in Figure 7.1(d). The factorization of a TAN BN is given
by

p(X, Y) = p(Y)
D∏
i=1

p (Xi | pa(Xi)) , (7.5)

subject to | pa(Xi)| ≤ 2 and Y ∈ pa(Xi). As we will see in Section 7.4, this relaxation of

– 137 –

7 Resource-Efficient Bayesian Network Classifiers

Y

X1 X2 X3 X4

(a) naïve Bayes

Y

X1 X2 X3 X4

(b) TAN (initial)

Y

X1 X2 X3 X4

(c) TAN (learned)

Y

X1 X2 X3 X4

(d) TAN (final)

Figure 7.1: (a) The naïve Bayes model as a BN. (b)–(d) TAN structure learning: We consider every left-
to-right edge of the ordered variables as a candidate for the conditioning parents. The TAN
structure allows each feature node Xi to have one additional parent besides Y . Therefore, each
edge is associated with a selection probability indicated by its thickness. (b) Initially, all edges
are equally probable. (c) After learning, those edges leading to the best objective value are more
probable. (d) The most probable incoming edge of each node is selected as the conditioning
parent.

the graph structure typically improves the predictive performance, but it also introduces a
substantial memory overhead due to larger CPTs.
We will use the following refined notation for the parameters of a TAN structure. The set of

all CPTs is given by θG = {θy} ∪ {θ1|j1 , . . . ,θD|jD} for ji ∈ {0, . . . , D}. Here, θy denotes the
CPT of p(Y) and θi|j denotes the CPT of p(Xi |Xj , Y). We define X0 = ∅ such that θi|0 denotes
the CPT of p(Xi |Y), i.e., Xi has no additional parent Xj . For this notation, the naïve Bayes
structure appears as a special case of the TAN structure where ji = 0 for all i.
As opposed to the naïve Bayes model, the TAN structure is not fixed. We can utilize this

freedom to perform structure learning in order to balance accuracy and model size. However,
this is not straightforward as the number of possible TAN structures is exponential in the number
of input features D. In Section 7.2, we present a differentiable method for jointly training the
graph structure and the CPTs that favors smaller models.

7.1.2 Hybrid Generative-Discriminative Training

Given a dataset D = {(xn, yn)}Nn=1 comprising N samples of input-target pairs, a model of the
joint distribution p(X, Y) over inputs and outputs such as BN classifiers can be trained using
a generative or a discriminative approach. In contrast, DNNs as introduced in Section 2.2 are
inherently discriminative models designed to model the conditional distribution p(Y |X).

A generative approach is concerned with modeling the joint distribution p(X, Y) well. This
is typically accomplished by minimizing the negative log-likelihood (NLL) loss

LNLL(θG ;D) = −
N∑
n=1

log p(xn, yn). (7.6)

A discriminative approach is concerned with modeling the conditional distribution p(Y |X)
directly. Note that, in this case, the model under consideration still represents a joint distribution
p(X, Y), but it is not important anymore that it reflects the given data well. In this work, we
consider a discriminative loss based on the notion of a probabilistic margin [207, 210]. In
particular, we minimize the large margin (LM) loss

LLM(θG ;D) =
N∑
n=1

max(0, γLM − βn(θG)), (7.7)

where γLM > 0 is a desired log-margin hyperparameter and βn is the probabilistic log-margin of

– 138 –

7.1 Bayesian Network Classifiers

the nth sample defined as

βn(θG) = log
(

p(yn |xn)
maxy 6=yn p(y |xn)

)
= log p(xn, yn)−max

y 6=yn
log p(xn, y). (7.8)

In our implementation of (7.8), we employ the softened version of the maximum from [207], i.e.,

max(v1, . . . , vM) ≈ 1
ξLM

log
M∑
i=1

exp(ξLMvi), (7.9)

where ξLM > 1 is a hyperparameter.
In practice, the discriminative approach is often superior in terms of classification performance,

but often discards most of the probabilistic semantics of the model. This motivates a hybrid
generative-discriminative loss to combine the advantages of both approaches as

LHYB(θG ;D) = LNLL(θG ;D) + λHYBLLM(θG ;D), (7.10)

where λHYB > 0 is a hyperparameter. Previous work has shown that by carefully trading off
between the generative and the discriminative loss in (7.10), most of the probabilistic semantics
can be maintained while achieving good accuracy. In many cases a hybrid classifier even out-
performs a pure discriminative classifier since the generative term can be seen as a regularizer
[211].

7.1.3 Structure Learning for Bayesian Networks

Structure learning for BNs is concerned with determining a directed acyclic BN graph G that
is optimal in some sense. This is a highly non-trivial task since the number of graphs G is
superexponential in the number of variables.
There exist basically two different classes of structure learning algorithms for BNs. On the

one hand, constraint-based approaches apply statistical tests to identify conditional indepen-
dencies among the variables Xi and aim to find a graph G that best reflects these conditional
independencies [212]. On the other hand, score-based approaches perform classical combina-
torial optimization over the space of BN graphs G to maximize a given score function. Score
maximization is known to be NP-hard, even for the favorable case of decomposable scores, i.e.,
scores that decompose into terms that only depend on individual nodes and their parents [213].
Our work is closely related to the score-based approach and, therefore, our discussion will be

restricted to this class of algorithms. Most score-based approaches apply some form of greedy
hill climbing heuristic to maximize the given score. Starting from some arbitrary graph G, hill
climbing approaches successively apply local changes to the structure (e.g., edge removals and
reversals) that result in a valid acyclic graph G′. If such a local change improves the score,
the resulting graph G′ is adopted; otherwise the local change is discarded. This procedure
typically continues until there exists no local change that improves the score. Hill climbing is
most effective when the score is decomposable. In this case, the new score after applying a local
change can be computed efficiently by an incremental score update [214].
We note that score functions depend, besides the given dataset D, only on the graph structure
G and not on the particular parameters θG . However, many common scores are still implicitly de-
fined in terms of some optimal parameters θ∗G that are available in closed form. For instance, the
likelihood score is defined in terms of the closed-form ML parameters θG,ML. As a consequence,
most decomposable scores are generative since discriminative scores, such as the conditional log-
likelihood score, do not admit closed-form expressions for the corresponding optimal parameters
θ∗G . Instead, iterative optimization procedures are required in this case [208, 215].
Nevertheless, according to our discussion in Section 7.1.2, a generative score might limit the

– 139 –

7 Resource-Efficient Bayesian Network Classifiers

performance of the resulting models on classification tasks and it is desirable to employ a dis-
criminative score. Grossman and Domingos [215] have shown that a discriminative conditional
likelihood score based on ML parameters θG,ML yields good results. They also performed exper-
iments using the full conditional likelihood score using a time-consuming iterative optimization
procedure within the hill climbing loop. However, they did not report improved results on
the small datasets where this was feasible. A rather different approach is pursued by Peharz
and Pernkopf [216] who performed margin based structure learning using a general purpose
branch-and-bound algorithm.
There also exist various methods restricted to TAN structure learning—the setting considered

in this chapter. In this case, there exists a polynomial time algorithm to find an optimal structure
with respect to the likelihood score [208]. This algorithm is an extension of the algorithm
proposed by Chow and Liu [217] to compute tree structured ML BNs. The algorithm first
computes a maximum spanning tree in a complete graph whose nodes correspond toX and whose
undirected edge weights are determined by the conditional mutual information I(Xi;Xj |Y).
Subsequently, the resulting undirected tree is transformed into a directed tree by directing the
edges away from an arbitrarily selected root node Xi. We refer to structures discovered by this
algorithm as Chow-Liu structures.
Discriminative training for TAN structures has been considered by Pernkopf et al. [218] who

applied greedy hill climbing to a probabilistic margin score. Pernkopf and Wohlmayr [219]
reported improved results for the probabilistic margin when optimized with simulated annealing.
However, all of these “discriminative” methods have in common that their discriminative score is
based on generative ML parameters θG,ML or, as in [215], they require a time-consuming iterative
optimization procedure within the hill climbing loop. Our differentiable method presented in
Section 7.2 allows for the joint training of the structure G and the parameters θG according to the
same discriminative criterion by means of gradient-based optimization. The proposed method
implicitly utilizes properties from stochastic mini-batch optimization to avoid local minima.
This is a well-known problem of combinatorial search heuristics that has been addressed by
several works, such as more elaborate search spaces [220] and perturbation methods [221].

7.1.4 Relation between Bayesian Network Classifiers and Deep Neural Networks

In this section, we highlight a connection between DNNs and BNs that supports the transfer
of well-established methods from the deep learning literature to BN classifiers. Recall that the
output layer of a DNN performs an affine transformation WLxL−1 + wL

0 and reports the most
probable class. This computation is equivalent to the computation performed by a logistic regres-
sion model. A connection between DNNs and BNs can then be established by appealing to the
well-known fact that the naïve Bayes model is the generative counterpart to the discriminative
logistic regression model [222].
Indeed, for discrete input features Xi, the following reasoning shows that logistic regression

models and BN classifiers with naïve Bayes structure compute their predictions in the same
way. For a BN classifier, the logarithm of (7.4) required for computing predictions is obtained
by computing for each target value y a sum over log-probabilities for each feature Xi. By
encoding all discrete input features xi as one-hot vectors x̄i and stacking them into a single
sparse vector x̄, we can cast the same computation as an affine transformation W̄x̄ + w̄0. Here,
W̄ contains entries from the CPTs θi|0 for i ∈ {1, . . . , D} and w̄0 corresponds to θy.
This line of reasoning can also be extended to TAN structures. In this case, predictions can

be written as an affine transformation by using one-hot encodings x̄i of the values that Xi and
its additional parent Xj take jointly. In this sense, our BN classifiers can be viewed as shallow
neural networks.

– 140 –

7.2 Differentiable TAN Structure Learning

Y

X1 X2 X3 X4

s1 = (1)

s2 = (0, 1) s3 = (0, 1, 0)

s4 = (0, 0, 1, 0)

(a) TAN structure encoding

Y

X1 X2 X3 X4

θyΘ1 = {θ1|0}

Θ2 = {θ2|0,θ2|1} Θ3 = {θ3|0,θ3|1,θ3|2}

Θ4 = {θ4|0,θ4|1,θ4|2,θ4|3}

(b) CPT parameters

Figure 7.2: TAN structure learning. (a) The parent of each node Xi is encoded by a one-hot vector si. The
first entry of si encodes that no additional parent is used. (b) Each feature node Xi maintains
a set of CPTs Θi for each possible parent.

7.2 Differentiable TAN Structure Learning

In this section, we introduce a loss that admits the joint training of the graph G and the CPTs
θG . We show how this loss can be trained by means of gradient-based optimization using the
reparameterization trick [62, 98, 99] based on the Gumbel-softmax approximation [100, 101],
and the STE [14], all of which are popular methods in the deep learning community. For this
chapter to be self-contained, a brief summary of these methods is provided. For a more detailed
discussion on the employed methods we refer to Section 3.4.4 for the reparameterization trick,
to Section 3.4.5 for the Gumbel-softmax approximation, and to Section 2.1.4 for the STE.

7.2.1 The Structure Learning Loss

Let X1, . . . , XD be a fixed ordering of the input features. Our differentiable structure learning
approach considers for each feature node Xi every Xj with j < i as a possible parent. This is
illustrated in Figure 7.1(b). Although the search space depends on the particular ordering of
X and does not cover all possible TAN structures, it is convenient as the resulting graph G is
guaranteed to be acyclic.
To enable a joint treatment of the graph structure G and the CPTs θG , we reformulate

log p(X, Y) for TAN BNs by introducing new discrete parameters s = {s1, . . . , sD} that specify
the graph structure G. In particular, let si = (si|0, . . . , si|i−1) be a one-hot encoding of Xi’s
parents such that si|j = 1 iff pa(Xi) = {Xj , Y } and si|0 = 1 iff pa(Xi) = {Y } (i.e., no additional
parent). This is illustrated in Figure 7.2(a). This encoding of the TAN structure allows us to
talk about G and s interchangeably. Furthermore, let Θi = {θi|0, . . . ,θi|i−1} be the CPTs of all
possible parents of Xi, and let Θ = {Θ1, . . . ,ΘD} ∪ {θy} be the collection of all possible CPTs.
This is illustrated in Figure 7.2(b). Then the log joint probability for a given TAN structure s
can be expressed as

log p(X, Y) = log pθy(Y) +
D∑
i=1

i−1∑
j=0

si|j log pθi|j (Xi |Xj , Y), (7.11)

where the subscripts of p are to emphasize the dependency on the CPTs Θ, and we define
X0 = ∅. We can then use (7.11) to generalize an arbitrary log-likelihood based loss LG(θG) for a
specific graph G to a loss L(Θ, s) where the graph structure s appears as free parameter. This
gives us a conceptual framework to optimize the structure parameters s and the CPTs Θ jointly.
However, minimizing the combinatorial loss L(Θ, s) is difficult as the number of different

structures s scales exponentially in the number of features D. To circumvent the combinatorial
nature of L(Θ, s), we first introduce continuous distribution parameters φ = (φ1, . . . ,φD) where
φi = (φi|0, . . . , φi|i−1) is a probability vector with ∑i−1

j=0 φi|j = 1, φi|j ≥ 0. The parameters φ

– 141 –

7 Resource-Efficient Bayesian Network Classifiers

induce a probability distribution over the one-hot vectors s and, consequently, also over the
graph structures G. We can then express a differentiable structure learning loss LSL as an
expectation with respect to the distribution over graph structures as

LSL(Θ,φ) = Es∼pφ [L(Θ, s)] = EG∼pφ [LG(θG)] . (7.12)

Here θG are the CPTs of Θ required by the graph structure G. Given an optimal structure
s∗ with respect to L(Θ, s), an optimal solution to (7.12) is given by the distribution φ∗ that
assigns all mass on this particular structure, i.e., φ∗ = s∗. Note that the distribution φ has no
particular interpretation and merely serves the purpose of obtaining a differentiable loss LSL.

7.2.2 Minimizing the Structure Learning Loss

The structure loss (7.12) becomes intractable for a moderate number of features D. However, it
can be optimized with stochastic gradient descent using Monte Carlo estimates of the gradient
of (7.12). The Monte Carlo estimates of the gradient are obtained via the reparameterization
trick [62, 98, 99], which has recently become a popular method for optimizing intractable ex-
pectations. The idea of the reparameterization trick is to generate a sample s by transforming
the distribution parameters φ along with a random sample ε drawn from a fixed parameter-free
distribution p(ε) to obtain s = g(φ, ε). This allows us to compute gradient samples of LSL with
respect to φ using the backpropagation algorithm.

For a categorical distribution with probabilities φi, we can sample a one-hot encoded vector
si by means of a reparameterization using the Gumbel-max trick [100, 101] according to

si = argmax
j
{ log(φi|j) + εi,j : j < i} with εi,j ∼ Gumbel(0, 1), (7.13)

where we assume that argmax computes a one-hot encoding of the maximum argument j.
However, the gradient of argmax(φi + εi) is zero almost everywhere and cannot be used

for backpropagation. To overcome this, we employ the STE [14]. The STE approximates the
gradient of a zero-derivative function f(u) during backpropagation with the non-zero gradient
of a similar function f̃(u) ≈ f(u), i.e.,

∂L
∂f

∂f

∂u
≈ ∂L
∂f

∂f̃

∂u
. (7.14)

In our case, we approximate the gradient of the argmax in (7.13) during backpropagation by
the gradient of a softmax function

softmaxj((logφi + εi)/τg) =
exp((log φi|j + εi,j)/τg)∑
j′ exp((log φi|j′ + εi,j′)/τg) , (7.15)

where τg > 0 is a temperature hyperparameter. For τg → ∞ we obtain a uniform distribution
and τg → 0 recovers the one-hot encoding. This particular sampling procedure is also known as
straight-through Gumbel-softmax approximation [100].
We note that for some applications it is sufficient to compute the forward pass using the

“softened” one-hot vectors obtained by the softmax (7.15) such that the STE is not required.
However, in our case this would have severe consequences as the resulting log-likelihoods in
(7.11) would be computed as a blend of several conditioning parents. While the resulting model
still can be used as a classifier, its probabilistic interpretation as a BN with TAN structure
would be corrupted. In practice, we have observed that by using the softened one-hot vectors
in the forward pass, many probabilities φi tend to be uniform since mixing the probabilities of
several parents improves the expressiveness of the classifier. In this case, we cannot expect the

– 142 –

7.3 Parameter Quantization for Bayesian Network Classifiers

classifier induced by the most probable structure G to perform well.
In our approach, the number of possible conditioning parents—and, therefore, also the number

of CPTs θi|j—is O(D2). Note that although most of the structure parameters si|j in (7.11) equal
zero, we still need to consider every conditional log-probability log pθi|j (Xi |Xj , Y) as they are
required to compute the gradient of φ using the STE. Since this is prohibitive for large D,
we propose to consider for each feature node Xi only a fixed randomly selected parent subset
{Xj : j < i} of maximum size K � D.27 This results in a linear dependence on the number of
features D as O(KD).
We have now established a means of optimizing (7.12) for Θ and φ using SGD. After training

has finished, we select the single most probable structure G and the corresponding CPTs θG .
We emphasize that the presented method for structure learning is agnostic to the particular loss
LG and that it can be used in conjunction with any differentiable loss.

7.2.3 Model-Size-Aware TAN Structure Learning
To also take the model size into account, we extend the structure learning loss (7.12) with an
additional expected model size (MS) term to obtain

LMS
SL (Θ,φ) = LSL(Θ,φ) + λMSEs∼pφ [LMS(s)] , (7.16)

where LMS(s) returns the number of parameters in the CPTs for structure s, and λMS > 0 is a
trade-off hyperparameter. The second term on the right hand side of (7.16) is given by

Es∼pφ [LMS(s)] = |θy|+
D∑
i=1

i−1∑
j=0

φi|j · |θi|j |, (7.17)

where |θ| denotes the number of parameters of θ. Objective (7.16) allows us to achieve different
trade-offs between accuracy and model size by careful selection of λMS while learning the CPTs
Θ and the TAN structure G simultaneously.

7.3 Parameter Quantization for Bayesian Network Classifiers
In this section, we introduce quantization-aware training for BN classifiers. We refer to Sec-
tion 4.1.2 for a thorough discussion on quantization-aware training of DNNs. Compared to
DNNs, the main difference of quantization for BNs is that their parameters θG are probabilities
subject to a normalization constraint. Moreover, when operating in log-space, the normalized
log-probabilities are non-positive, allowing for an unsigned numeric representation. We also
introduce the quantization scheme for DNNs used for our extensive empirical evaluation in
Section 7.5.

7.3.1 Quantization-Aware Bayesian Network Classifiers
Quantization-aware training of BN classifiers is illustrated in Figure 7.3. As briefly discussed in
Section 7.1, it is convenient to store the CPTs of BNs as log-probabilities θ. During training, we
store the parameters as unnormalized log-probabilities ρ. At forward propagation, we compute
the normalized log-probabilities θ as

θu,vi|j = ρu,vi|j − log
∑
u′

exp ρu
′,v
i|j , (7.18)

27 Since we also allow no additional parent (i.e., si|0 = 1), this results in K + 1 choices for the parents of Xi.

– 143 –

7 Resource-Efficient Bayesian Network Classifiers

ρ

log-
sum-
exp

− θ quant θq

id

Figure 7.3: Computation graph for quantization-aware training of BN classifiers. During the forward
path (red arrows), the unnormalized log-probabilities ρ are first normalized by subtracting the
logsumexp. Subsequently, the normalized log-probabilities θ are quantized (quant). In the back-
ward path (green dashed arrows), the derivative of the identity function (id) is computed.

where θu,vi|j = log p (Xi = u |(Xj , Y) = v). Note that the normalization is necessary as otherwise
the log-likelihood could be made arbitrarily large.
In [209], it is proposed to represent the non-positive normalized log-probabilities θ as

θq = −
BI+BF∑
k=1

bk · 2−BF−1+k, (7.19)

where b ∈ {0, 1}BI+BF is a bitmask, BF denotes the number of fractional bits, and BI denotes
the number of integer bits. To quantize θ ≤ 0 to the set of possible values representable by
(7.19), we apply the quantizer

quantBN(θ) = clip(round(θ · 2BF) · 2−BF , −U, 0), (7.20)

where clip(v, l, u) := min(max(v, l), u) is the clipping function and U := 2BI − 2−BF is the
largest magnitude representable by (7.19). During backpropagation, we apply the derivative
of the identity function for the STE. Note that after quantization the log-probabilities are in
general not normalized anymore.

7.3.2 Quantization-Aware Deep Neural Networks

Quantization-aware training of DNNs is illustrated in Figure 4.1. We quantize the DNN weights
according to

quantDNN(w) = quant
(clip(w, −1, 1) + 1

2 ;B
)
· 2− 1, (7.21)

where quant(v;B) is the quantization scheme proposed in [130] which quantizes v ∈ [0, 1] to a
B-bit number as

quant(v;B) = 1
2B − 1 · round((2B − 1) · v). (7.22)

Again, we employ the identity function for the STE.
In case the sign activation function is used, we use a stochastic sign function during training

according to

signstoch(a) =
{

1 if ε ≤ (1 + a)/2
−1 otherwise,

(7.23)

where ε ∼ U([0, 1]) is drawn from a uniform distribution. During backpropagation, we employ
the derivative of tanh for the STE.

– 144 –

7.4 Structure Learning Experiments

7.4 Structure Learning Experiments
We conducted experiments on two UCI classification datasets (Letter and Satimage, see Ap-
pendix A.6), the USPS dataset (see Appendix A.5), and the MNIST dataset (see Appendix
A.1). For MNIST, the original images of size 28 × 28 were linearly downscaled to 14 × 14
pixels, resulting in 196 features. The features were discretized using the approach from [223].
The resulting average numbers of discrete values per feature are 9.1, 11.5, 3.4, and 13.2 for
Letter, Satimage, USPS, and MNIST, respectively. Except for Satimage where we use 5-fold
cross-validation, we split each dataset into two thirds of training samples and one third of test
samples. For MNIST, this results in 46,669 training images and 23,331 test images, which
deviates from the default setting described in Appendix A.1.
Unless stated otherwise, BN classifiers were trained according to the hybrid generative-dis-

criminative loss (7.10), i.e., LG = LHYB in (7.12). All experiments were performed using the
stochastic optimizer Adam [11] for 500 epochs. We used mini-batches of size 50 on Satimage,
100 on Letter and USPS, and 250 on MNIST. Each experiment is performed using the two
learning rates {3 · 10−3, 3 · 10−2} for the CPTs Θ, and we report the superior result of the two
optimization runs. The learning rate is decayed exponentially after each epoch, such that it
decreases by a factor of 10−3 over the training run. We used a fixed learning rate of 10−3 for
the structure parameters φ that is not decayed.

The CPTs Θ and the structure parameters φ are stored as unnormalized log-probabilities.
We initialize Θ randomly using a uniform distribution U([−0.1, 0.1]), and we set φ initially to
zero, resulting in a uniform distribution over graphs G.

We anneal τg in (7.15) exponentially from 101 to 10−1 over the training run. This results in
a more uniform distribution over structures s at the beginning of training, facilitating explo-
ration of different structures, whereas the distribution becomes more concentrated at particular
structures towards the end of training.
We compare the following BN structures.

Naïve Bayes (NB) The naïve Bayes structure without additional parents.

TAN Random TAN structure obtained by a random variable ordering and selecting a random
parent Xj for each Xi with j < i. We evaluated ten parent selections for five variable
orderings, resulting in 50 structures in total.

Chow-Liu TAN structure obtained using the procedure from [208].

TAN Subset (ours) Fixed random variable ordering and randomly selected parent subset of
maximum size K satisfying the j < i constraint. We evaluated five parent subsets for five
variable orderings, resulting in 25 configurations in total. We selected K ∈ {2, 5, 8}.

TAN All (ours) Fixed random variable ordering and considering all parents satisfying j < i.
We evaluated five variable orderings. This setting is only evaluated for the datasets Letter
and Satimage that have fewer features D.

TAN Heuristic (ours) Heuristically determined feature ordering and respective parent subsets
based on pixel locality. This setting is evaluated for the image datasets USPS and MNIST.
We evaluated three ordering heuristics (for details see Section 7.4.2) and selected K ∈
{1, 2, 5, 8}.

We evaluated the same five random variable orderings for TAN Random, TAN Subset, and
TAN All. To assess the impact of different K, the parent subsets for smaller K are strict subsets
of parent subsets for larger K. Note that we allow Xi to have no additional parent such that for
TAN Subset and TAN Heuristic there are effectively up to K + 1 choices for the conditioning
parents of Xi.

– 145 –

7 Resource-Efficient Bayesian Network Classifiers

loss L LNLL (ML) LHYB LSL with LHYB (ours)
structure NB Chow-Liu NB TAN Random Chow-Liu TAN Subset TAN All TAN Heuristic
Letter 25.89 15.23 12.93 10.66 9.37 8.73 8.76 /
Satimage 17.95 11.90 10.83 9.83 9.91 9.31 9.39 /
USPS 13.11 8.74 4.29 2.65 3.42 2.10 / 2.27
MNIST 17.34 7.03 4.44 4.38 3.65 3.53 / 3.29

Table 7.1: Classification errors [%] of various BN structures on several datasets. See text for details.

We tuned the hyperparameters of LHYB using random search in two different settings. In
setting (I), we selected 500 hyperparameter configurations according to log10 λHYB ∼ U([0, 3]),
log10 γLM ∼ U([−1, 2]), and ξLM ∼ U([1, 20]). In setting (II), we selected 100 hyperparameter
configurations according to log10 λHYB ∼ U([1, 3]), log10 γLM ∼ U([−1, 2]), and used a fixed
ξLM = 10. We applied (II) to experiments where we evaluated more structural settings, namely
TAN Random, TAN Subset, and TAN Heuristic, and we applied setting (I) to all other experi-
ments. Note that these hyperparameters are tuned individually for each experiment, i.e., each
setting of the remaining hyperparameters is evaluated 500 times for setting (I) and 100 times
for setting (II).

7.4.1 Classification Results
We report the test errors after 500 epochs of training. Results for ML parameters are obtained in
closed form. The best classification errors [%] over all parameter settings are shown in Table 7.1.
Results of individual experiments are shown in Figure 7.4.
Models with generative parameters (ML, i.e., λHYB = 0) perform poorly, showing that dis-

criminative training is beneficial. The TAN structures outperform Naïve Bayes (NB) by a large
margin. This highlights the benefit of introducing simple TAN interactions, even when they
are selected randomly (TAN Random). Note that the data-driven Chow-Liu structure does not
outperform TAN Random on all datasets, and there is even a large test error gap on USPS
where we observed overfitting.
Our method (TAN Subset) outperforms TAN Random and Chow-Liu on all datasets. We

emphasize that our method outperforms these baseline models on a wide range of settings (see
Figure 7.4), and not just using the best setting. TAN Subset achieved its best performance
using the largest parent subsets with K = 8 on all datasets. Interestingly, TAN All does not
benefit when considering all conditioning parents compared to TAN Subset with K = 8. We
have two possible explanations for this. First, Letter and Satimage have relatively low numbers
of features (D = 16 and D = 36, respectively), and K = 8 suffices to cover a good structure
with high probability using randomly selected parent subsets. Second, using a larger K results
in a sparser gradient since only the gradient with respect to a single CPT θi|j for each i is non-
zero (i.e., the CPT whose corresponding parent is being sampled). This reduces the number of
gradient updates per CPT which affects the learning behavior. Consequently, a different choice
of number of epochs or learning rate might yield improved results.

7.4.2 Heuristic Structures for Image Data
We evaluated three different heuristic feature orderings for quadratically sized images (see Fig-
ure 7.5). Feature ordering A considers the pixels row-wise from top to bottom in a left-to-right
fashion. Feature ordering B proceeds along the main diagonal by traversing the lower triangular
image matrix (including the diagonal) in a row-wise fashion, and including after each pixel the
corresponding transposed pixel from the upper triangular matrix. Feature ordering C proceeds
from the center of the image outwards. Assuming that a center region of H × H is already
ordered, we add the H pixels directly above and the H pixels directly below in a left-to-right

– 146 –

7.4 Structure Learning Experiments

1 1.5 2 2.5 3

9

10

11

12

13

14

log10 λHYB

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]
Näıve Bayes

TAN Random
TAN Chow-Liu

TAN All

TAN Subs. (K=8)

(a) Letter

1 1.5 2 2.5 3

9.5

10

10.5

11

log10 λHYB

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Näıve Bayes
TAN Random

TAN Chow-Liu
TAN All

TAN Subs. (K=8)

(b) Satimage

1 1.5 2 2.5 3
2

3

4

5

log10 λHYB

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Näıve Bayes
TAN Random

TAN Chow-Liu

TAN Subs. (K=8)

TAN Heur. (K=8)

(c) USPS

1 1.5 2 2.5 3

3.5

4

4.5

5

log10 λHYB

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

Näıve Bayes TAN Random

TAN Chow-Liu TAN Subs. (K=8)

TAN Heur. (K=8)

(d) MNIST

Figure 7.4: Test classification errors [%] of different methods over log10 λHYB. Each point corresponds to a
different experiment. For better visualization, the lines show the lower part of the convex hull of
equally colored points, i.e., no points of this color are below this line.

fashion, and then we add the H pixels directly to the left and the H pixels directly to the right
in a top-to-bottom fashion. Finally, we also include the four corner pixels in the order top-left,
top-right, bottom-left, and bottom-right. For each ordering A, B, and C, the subset of at most
K conditioning parents of Xi is obtained by selecting {Xj : j < i} as the K closest features with
respect to Euclidean distance of the corresponding pixel locations.
The heuristic structures show clear improvements on MNIST (see Table 7.1 and Figure 7.4(d)),

and the best result was obtained using ordering C. Overall, when comparing different runs over
several random hyperparameter settings in Figure 7.6(a), we found that ordering C slightly
outperforms ordering B which in turn slightly outperforms ordering A. Note that any of the
proposed heuristic orderings outperform the random orderings of TAN Subset.
Figure 7.6(b) compares distinct values of K. Overall, using larger parent subsets improves

the performance. When comparing K = 1 and K = 2, we can see that choosing between two
neighboring pixels and not just selecting a fixed one improves performance. When going from
K = 5 to K = 8, the accuracy gains are marginal, showing that our method works well for
smaller K if the feature ordering and parent subsets are carefully selected. We emphasize that
this latter behavior is specific to the heuristic structures, and we generally observed larger gains

– 147 –

7 Resource-Efficient Bayesian Network Classifiers

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(a) heuristic ordering A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

(b) heuristic ordering B

1 2

3 4

5 6

7 8

9

10

11

12

13 14

15 16

17 18 19 20

21 22 23 24

25

26

27

28

29

30

31

32

33 34

35 36

(c) heuristic ordering C

Figure 7.5: Heuristic feature orderings for image data of size 6 × 6. (a) Feature ordering A proceeds in a
row-wise fashion. (b) Feature ordering B proceeds along the main diagonal. (c) Feature ordering
C starts in the center and proceeds outwards. For details see the main text.

when going from K = 5 to K = 8 for TAN Subset.
We did not observe benefits of the heuristic structures on USPS, which we attribute to over-

fitting issues similar as to why Chow-Liu performs worse than TAN Random on this dataset.

7.4.3 Influence of the Feature Ordering and Parent Subsets
The influence of the feature ordering of TAN Subset on Satimage for K = 8 is shown in Fig-
ure 7.6(c). We can see that some random orderings clearly outperform others over a wide range
of parameters, showing that the selected ordering might have a large impact on the overall
performance.
To further assess the influence of fixing the feature ordering, we conducted an experiment by

allowing conditioning parents that violate the j < i constraint. This results in pseudo TAN
structure classifiers which potentially contain cycles and, therefore, are not BNs anymore. The
classification errors remained similar on all datasets except Letter where we achieved 7.98%
(0.75% absolute improvement). These findings suggest that more elaborate techniques consid-
ering different orderings as in [224] are worthy of investigation.
Next, we investigated the influence of particular parent subsets. Figure 7.6(d) shows different

parent subsets of TAN Subset on Letter for K ∈ {2, 8}. Again, using larger K = 8 clearly
outperforms the smaller K = 2. Similar to feature orderings, some parent subsets clearly
outperform others over a wide range of parameters, but here increasing K reduces the gap.

7.4.4 Recovering the Chow-Liu Structure
We conducted an experiment using the generative loss LNLL (i.e., λHYB = 0) to see whether
our approach is capable of recovering the “ground truth” Chow-Liu structure. Therefore, we
computed a Chow-Liu structure and a corresponding ordering such that the Chow-Liu structure
is contained in the search space. Our method was able to recover the Chow-Liu structure
consistently. Note that this is a minimal requirement of our structure learning approach as
the structure learning loss LSL decomposes to local terms similar as the generative loss LNLL,
substantially simplifying the optimization problem.

7.4.5 Model-Size-Aware TAN Structure Learning
We performed model-size-aware TAN structure learning according to the method described in
Section 7.2.3. The experiments were performed using the TAN Subset setting. The hyperpa-

– 148 –

7.4 Structure Learning Experiments

1 1.5 2 2.5 3
3.2

3.4

3.6

3.8

log10 λHYB

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Heuristic ordering A
Heuristic ordering B
Heuristic ordering C

(a) MNIST

1 1.5 2 2.5 3
3.2

3.4

3.6

3.8

log10 λHYB

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

K = 1
K = 2
K = 5
K = 8

(b) MNIST

0.6 0.8 1 1.2 1.4 1.6 1.8

9.5

10

10.5

11

log10 γLM

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Ordering 1
Ordering 2
Ordering 3
Ordering 4
Ordering 5

(c) Satimage

−0.5 0 0.5 1 1.5
9

10

11

12

13

14

log10 γLM

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

K = 2
K = 8

(d) Letter

Figure 7.6: Test classification errors [%] over a hyperparameter of LHYB. Each point corresponds to a
different experiment. For better visualization, the lines show the lower part of the convex hull
of equally colored points, i.e., no points of this color are below this line. (a) Results of TAN
Heuristic on MNIST with an emphasis on different heuristic feature orderings. (b) Same results
as in (a), but with an emphasis on the maximum number of conditioning parents K ∈ {1, 2, 5, 8}.
(c) Results of TAN Subset on Satimage for several feature orderings. (d) Results of TAN Subset
on Letter for several parent subsets (encoded as colors) and K ∈ {2, 8} evaluated for a fixed
feature ordering.

rameters of LHYB, the feature ordering, and the subsets of possible parents are obtained from
the best TAN Subset experiment of Table 7.1. We evaluated several trade-off parameters λMS
to obtain different model sizes and accuracies.
Figure 7.7(a) shows how the test error and the number of parameters vary with λMS on

Letter (results are qualitatively similar on the other datasets). For small λMS, we obtain an
unconstrained TAN structure, whereas for large λMS, we recover the naïve Bayes structure. For
intermediate λMS, we observe increasing test errors and decreasing model sizes as λMS increases.

Figures 7.7(b)–7.7(d) show the Pareto frontier with respect to model size and accuracy by
varying λMS on Satimage, USPS, and MNIST, respectively. The leftmost point in each figure
corresponds to the naïve Bayes model discovered for large λMS. The rightmost points correspond
to unconstrained TAN structures. For intermediate points, we obtain different trade-offs between
model size and accuracy. Especially on USPS, a negligible increase in model size is sufficient to

– 149 –

7 Resource-Efficient Bayesian Network Classifiers

−5 −4 −3 −2 −1 0

10

12

14

log10 λMS

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

Test error [%]

1

5

10

#
p
ar

am
et

er
s

(3
82

2
×

)

Test error [%]
#parameters

(a) Letter

2 4 6 8 10

9.5

10

10.5

11

11.5

#parameters (2508×)

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

(b) Satimage

1 2 3

2.5

3

3.5

4

4.5

#parameters (8650×)

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

(c) USPS

2 4 6 8 10 12 14 16

3.6

3.8

4

4.2

4.4

4.6

#parameters (25800×)

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

(d) MNIST

Figure 7.7: Model-size-aware TAN structure learning for BN classifiers. The number of parameters are
shown as multiples of those required by the naïve Bayes structure. (a) Test classification error
[%] (left y-axis) and number of parameters (right y-axis) over model size trade-off parameter
λMS on Letter. (b)–(d) Pareto optimal models with respect to model size and test classification
error obtained by evaluating several λMS on the remaining datasets.

achieve substantial gains in accuracy compared to the naïve Bayes structure.
Since the CPTs grow by a factor of the number of possible parent values, the granularity of the

achievable trade-offs is dataset dependent. On USPS, the average number of values per feature
is relatively low (i.e., 3.4), and we can trade off smoothly between model size and accuracy.
On Letter, Satimage, and MNIST, the corresponding numbers of values per feature are larger
(i.e., 9.1, 11.5 and 13.2, respectively). This translates into larger model size differences between
neighboring points (note the axis scale).

7.5 Quantization Experiments

For the BN quantization experiments, we essentially use the same setup as described in Sec-
tion 7.4. The hyperparameters of LHYB were tuned according to setting (II). For parameter
quantization using (7.20), we evaluated the total number of bits BI + BF ∈ {1, . . . , 8}. We
varied the number of integer bits BI ∈ {1, . . . , 6} and report for each total number of bits the

– 150 –

7.5 Quantization Experiments

result of the best performing BI . Note that BF becomes negative for some configurations. In
these cases, not every integer value is a possible outcome after quantization.
DNNs were trained according to the cross-entropy loss. We performed stochastic optimization

using Adam [62] for 500 epochs using the same mini-batch sizes as in the BN experiments. Each
experiment is performed using the three learning rates {3 · 10−4, 3 · 10−3, 3 · 10−2}, and we
report the best result at the end of the three optimization runs. The learning rate is decayed
exponentially after each epoch, such that it decreases by a factor of 10−4 over the training
run. The initial weights are drawn from a uniform distribution whose variance is determined
according to [19]. CNN experiments were only conducted on the image datasets USPS and
MNIST. For DNNs we normalized the discretized input features to zero mean and unit variance
and treat the resulting values as real-valued quantities.

7.5.1 Fixed Parameter Memory Budget

In the first quantization experiment, we investigate the classification performance of several
models with a fixed memory budget for their parameters. We compare BN classifiers using a
naïve Bayes structure (BNC NB) with fully connected DNNs (FC NNs) and CNNs. The target
memory is selected as the number of bits required by BNC NB for a given bit width BI + BF .
We designed DNNs that require approximately the same memory.
For fully connected DNNs, we constrained the number of hidden units dl in each layer to be

equal. We evaluated the bit width B ∈ {1, . . . , 8}, the number of layers L ∈ {2, 3, 4, 5}, and
performed each experiment once with and once without batch normalization. In case batch
normalization is employed, we count the batch normalization parameters as 32 bits, resulting in
64 bits per hidden unit. Batch normalization is not performed in the output layer, where we use
biases that are counted as 32 bits per output. We do not use biases in the hidden layers, even
when batch normalization is not employed. With this specification, the total number of bits
only depends on the number of hidden units. We select the number of hidden units by rounding
the real-valued number that would exactly match the target memory.
We proceed similarly for CNNs where we select the number of channels dl. We consider

CNNs with one or two convolutional layers, followed by a fully connected output layer. After
each convolutional layer, we downscale the image by a factor of two using max pooling. In case
of two convolutional layers, the number of channels of the second layer is constrained to be
twice the number of channels of the first layer (i.e., d2 = 2d1). Again, the batch normalization
parameters (if used) incur 64 bits for each channel, and we employ 32 bit biases in the output
layer. The resulting real-valued number of channels is rounded separately for the first and the
second hidden layer.
If not stated otherwise, DNNs treat the (normalized) discrete input features as real values. We

also perform experiments using one-hot encoded input features as outlined in Section 7.1.4 such
that BNs and DNNs treat the inputs equally. Note that this increases the number of weights in
the first layer for a given number of hidden units.
The best results for a given target number of bits are shown in Figure 7.8. The optimal

number of bits per weight is highly dataset dependent. For instance, our BN classifiers with one
bit per weight perform reasonably well on USPS, while the performance still improves up to 6–7
bits on Letter.
We confirm that CNNs are extremely memory efficient. Even for the smallest memory budget,

CNNs with ReLU activation are more accurate than all other models using the largest memory
budget. The activation function is crucial as the accuracy degrades considerably for the sign
function.
Fully connected DNNs outperform BN classifiers consistently. This is due to DNNs treating

the inputs as real values, which allows them to be more memory efficient by only maintaining
one weight per feature rather than one weight per feature value. By spending the gained memory

– 151 –

7 Resource-Efficient Bayesian Network Classifiers

1 2 3 4 5 6 7 8

5

10

15

20

Model size [bits] ≈ 3822×

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

(a) Letter

1 2 3 4 5 6 7 8

9

10

11

12

13

14

Model size [bits] ≈ 2508×

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

(b) Satimage

1 2 3 4 5 6 7 8
0

2

4

6

8

10

Model size [bits] ≈ 8650×

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

(c) USPS

1 2 3 4 5 6 7 8

2

4

6

8

Model size [bits] ≈ 25800×

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

(d) MNIST

Figure 7.8: Test classification errors [%] over model size budgets in bits. The x-axis shows the model size
of BN classifiers with naïve Bayes structure (BNC NB) for given bit widths BI + BF . Fully
connected DNNs (FC NNs) and CNNs are designed to have approximately (due to rounding) the
same model size.

into additional layers computing intermediate representations, the performance improves. We
verified that the improvements can be attributed to the intermediate representations of DNNs,
as logistic regression (i.e., a single layer neural network) with float32 weights performs poorly
on the real-valued inputs.
A fairer comparison is obtained by using one-hot encoded inputs for DNNs. Note that for

one-hot encoded inputs, it is still possible for DNNs to achieve a lower memory overhead than
BN classifiers by (i) employing a hidden layer with fewer units than the number of classes and
by (ii) using fewer bits per weight. Especially the case of using fewer bits per weight highlights
the importance of a DNN’s capability to compute intermediate representations. For instance,
on USPS, the performance of BN classifiers with three or more bits can be obtained by a fully
connected DNN using fewer bits and by spending the gained memory in an additional layer.
Our quantized BN classifier outperforms the specialized branch-and-bound method (B&B)

from [209] by a large margin. From a practical perspective, quantization-aware training fits
seamlessly into existing gradient-based learning frameworks and incurs only a negligible com-

– 152 –

7.5 Quantization Experiments

2 4 8 16 32 64 128 256
0

2

4

6

8

10

#operations ≈ 2560×

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

(a) USPS

2 4 8 16 32 64 128 256

2

4

6

8

10

#operations ≈ 1960×

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

(b) MNIST

Figure 7.9: Test classification errors [%] over fixed budgets for the number of operations. The x-axis corre-
sponds to multiples of the number of operations required by a BN classifier (BNC).

putational overhead. Branch-and-bound algorithms, on the other hand, are computationally
intensive and often rely on carefully selected heuristics to reduce the running time. We also
observed that different hyperparameters are optimal for different bit widths BI +BF . This is in
contrast to [209] where the running time of the branch-and-bound algorithm did not allow for
an extensive hyperparameter search.

7.5.2 Fixed Number of Operations Budget
We compare BN classifiers using a naïve Bayes structure (BNC NB) with CNNs using a fixed
budget for the number of operations. Since BNs require very few operations, we design CNNs
that require multiples of that number of operations. Similar to how the CNN architecture is
obtained in Section 7.5.1, we select the number of channels to match a given target number
of operations. We treat both addition and multiply-accumulate as single operations. Batch
normalization and adding biases incur one operation per hidden unit.
Figure 7.9 shows the best results for fixed operation budgets. On USPS and MNIST, CNNs

with ReLU activation require at least 2–4× and 4–8× as many operations as a BN, respectively,
to achieve a better performance. For the sign activation, an even larger number of operations is
required to match the accuracy of the BN. Moreover, CNNs require many operations to achieve
their full potential. On USPS, CNNs require at least 64× the operations, and on MNIST, they
even require 256× the operations to achieve their best performance.

7.5.3 Quantization for BN Classifiers
Figure 7.10 shows test errors of quantized BN classifiers with naïve Bayes and TAN structures.
For each dataset, we used the TAN structure discovered in the best TAN Subset experiment of
Table 7.1. Consequently, the test errors achieved by the float32 TAN BN classifiers are rather
optimistic, which explains the consistent test error gap to the quantized models on Satimage
and MNIST.

Our quantization approach allows us to effectively trade off between accuracy and model size
for both BN architectures. The number of bits at which the test error saturates depends, in

– 153 –

7 Resource-Efficient Bayesian Network Classifiers

1 2 3 4 5 6 7 8

10

15

20

25

#bits/parameter (= BI + BF)

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

BNC NB
BNC TAN

BNC NB float32
BNC TAN float32

(a) Letter

1 2 3 4 5 6 7 8

9.5

10

10.5

11

11.5

12

#bits/parameter (= BI + BF)

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

BNC NB
BNC TAN

BNC NB float32
BNC TAN float32

(b) Satimage

1 2 3 4 5 6 7 8

2

3

4

5

#bits/parameter (= BI + BF)

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

BNC NB
BNC TAN

BNC NB float32
BNC TAN float32

(c) USPS

1 2 3 4 5 6 7 8

3.5

4

4.5

5

5.5

#bits/parameter (= BI + BF)

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

BNC NB
BNC TAN

BNC NB float32
BNC TAN float32

(d) MNIST

Figure 7.10: Test classification errors [%] over numbers of bits per parameter BI + BF for quantized BN
classifiers (BNC) with naïve Bayes (NB) and TAN structure. The horizontal lines show the
respective test errors for float32 parameters.

addition to the dataset, also on the architecture. The naïve Bayes model is already prone to
underfitting such that it suffers more severely than the more expressive TAN structure when
using only one or two bits. For instance, when comparing the test error for two bits and eight
bits, the difference is rather small for the TAN structure on all datasets, but it is quite substantial
for the naïve Bayes model on some datasets.

7.5.4 Comparing Bayesian Network Classifiers and Deep Neural Networks
Finally, we contrast DNNs and BN classifiers with respect to (i) number of bits to store the
parameters, (ii) number of operations, and (iii) test error. Figure 7.11 shows Pareto optimal
models with respect to these three dimensions, i.e., we cannot improve on these models in one
dimension without degrading some other dimension.28 The models were obtained from the
previous quantization experiments in Sections 7.5.1, 7.5.2, and 7.5.3. We do not include results
for DNNs operating on one-hot encoded inputs.
BN classifiers require very few operations and achieve a moderate test error. Among BNs, we

28 Of course, this statement is only true within the set of models discovered in our experiments.

– 154 –

7.5 Quantization Experiments

102.6 102.8 103 103.2 103.4 103.6 103.8

5

10

15

20

#operations

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

FC NN
BNC NB

BNC TAN

(a) Letter

104 105 106
0

2

4

6

8

#operations

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

FC NN
CNN

BNC NB
BNC TAN

(b) USPS

104 105

9

10

11

12

Model size [bits]

T
es

t
cl

as
si

fi
ca

ti
o
n

er
ro

r
[%

]

FC NN
BNC NB

BNC TAN

(c) Satimage

104 105 106
0

2

4

6

8

10

Model size [bits]

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

FC NN
CNN

BNC NB
BNC TAN

(d) MNIST

Figure 7.11: Comparison of BN classifiers (BNCs) and DNNs. Each disk corresponds to a Pareto optimal
model with respect to test error, number of operations, and memory usage for the parameters.
(a), (b): Test classification errors [%] over number of operations required to compute predic-
tions. The area of the disks is proportional to the model size in bits. (c), (d): Pareto optimal
models with model size on the x-axis and number of operations encoded as the area of the disks.

can improve the performance by selecting a TAN structure instead of a naïve Bayes structure,
but this typically incurs a considerable memory overhead. For instance, on MNIST where the
average number of values per feature is relatively high (i.e., 13.2), it is questionable whether
the performance gain can be justified, considering that the memory increases by an order of
magnitude.

At the same time, DNNs outperform BNs on every dataset in terms of accuracy, but they
require substantially more operations to do so. Fully connected DNNs allow for a fine-grained
trade-off between accuracy, memory, and operations due to their flexible structure. However,
as discussed in Section 7.5.1, the memory efficiency of fully connected DNNs can partly be
explained by the fact that they consider the inputs as real-valued quantities. Interestingly, by
introducing a bottleneck layer exhibiting fewer units than there are output classes, DNNs might
even require fewer operations than BNs. This can be seen, for instance, in Figure 7.11(b) on
USPS. However, the accuracy degradation in this case is also quite substantial.
Once again, we can see that CNNs are extremely memory efficient, but they require many

– 155 –

7 Resource-Efficient Bayesian Network Classifiers

operations. For instance, on MNIST, CNNs require up to three orders of magnitude more
operations than BNs to achieve their best accuracy.

7.6 Discussion
This chapter is dedicated to answering the question whether other fields of machine learning can
benefit from recent advances in (resource-efficient) deep learning. For this purpose, we selected
BN classifiers with naïve Bayes and TAN structure as our model of study.
Our first main contribution is closely related to recently developed differentiable NAS tech-

niques such as [184, 187]. In particular, we presented an approach to jointly train the parameters
of a BN along with its graph structure through gradient-based optimization. This is accom-
plished by introducing a discrete distribution over TAN structures and minimizing an expected
loss with respect to this distribution. After training, the most probable TAN structure is se-
lected.29 The method can be easily implemented using modern automatic differentiation frame-
works and does not require combinatorial optimization techniques such as greedy hill climbing.
The presented method is agnostic to the specific loss and only requires that it is differentiable.
In this work, we used a hybrid generative-discriminative loss based on a probabilistic margin
criterion. By incorporating a model size penalty into the loss, we are able to effectively trade
off between accuracy and model size.
We conducted extensive experiments showing that our method consistently outperforms ran-

dom TAN structures and Chow-Liu TAN structures. We observed that the selected variable
ordering and parent subsets affect the final accuracy of the model. For image data, we proposed
a heuristic variable ordering and parent subset selection to further improve performance. The
results show that selecting larger parent subsets results in higher accuracy. However, the choice
of parent subsets affects the learning behavior such that optimal hyperparameters (e.g., number
of epochs, learning rate) might actually depend on the particular parent subsets. This could
partly explain why TAN All—which actually considers all possible parents—did not outperform
TAN Subset.
Using the model size loss, we obtained accuracy and model size trade-offs ranging from the

naïve Bayes model to unconstrained TAN structures. In some cases, introducing few TAN
connections was sufficient to considerably increase the accuracy compared to the naïve Bayes
structure. The granularity of the achieved trade-offs depends largely on the number of possible
values per feature. Consequently, the proposed method is most effective when individual features
can take only few values.
Our second main contribution considers quantization-aware parameter learning for BN classi-

fiers using the STE . We highlighted the effectiveness of our approach in extensive experiments.
Our method outperforms a specialized branch-and-bound algorithm for learning discrete BN
classifiers by a large margin. Moreover, we contrasted quantized BN classifiers with quantized
DNNs and identified regimes of model size, number of operations, and test error in which each
model class performs best. In particular, BN classifiers require few operations and achieve de-
cent accuracy. CNNs are memory efficient and achieve the highest accuracy, but they require
many operations to do so. Fully connected DNNs provide flexible trade-offs. We emphasize that
our results also show that quantized DNNs perform well in the small-scale setting which has
been hardly addressed in the literature.
In summary, our work shows that recently developed techniques from the deep learning com-

munity are transferable to other model classes. We believe that several other techniques, espe-
cially among those discussed in Chapter 4, can be successfully transferred to other model classes
and, in particular, to BNs.

29 This is similar to our method presented in Chapter 5 where we introduce discrete distributions over weights.

– 156 –

7.6 Discussion

7.6.1 Limitations and Future Work
The performance of our structure learning method depends on two choices that must be made
before training, i.e., (i) a fixed variable ordering and (ii) a particular parent subset of maximum
sizeK. While we have shown that a heuristic variable ordering for image data is beneficial, we did
not investigate heuristics for arbitrary data. Heuristic variable orderings based on information
theoretic criteria, such as the method proposed in [225], could be promising. Furthermore,
methods that exclude cycles by means of continuous optimization (e.g., [224]) might fit naturally
into our framework.
Since our method requires a separate CPT per possible parent, considering all possible parents

is only feasible for datasets with a moderate number of features. As a remedy, we proposed to
select subsets of the possible parents if the number of features is high. Similar to the variable
orderings, heuristic selection strategies based on information theoretic criteria could be promis-
ing. In our experiments, we have also shown that the influence of the parent subsets can be
reduced by increasing K. While this is currently only possible up to a very limited point, using
more compact representations of the CPTs might be a solution. We refer to [226] for a concise
overview of different CPT representations. In particular, functional representations using DNNs
(e.g., [227]) are promising to combine several CPTs in a single shared representation.
Shared representations might also resolve the issue of sparse gradients, i.e., non-zero gra-

dients are obtained only for those CPTs whose corresponding parent is being sampled. As a
consequence, the gradients become increasingly sparse for nodes having many possible parents,
resulting in severe imbalances between low and high ranked variables in the selected ordering.
For a shared representation, the same parameters are updated during training irrespective of
the sampled parents, potentially improving the learning behavior.
We believe that the underlying principles of our approach are not restricted to TAN structures.

Again, shared parameter representations might be key to apply the proposed method to more
flexible structures; in particular, if individual nodes are allowed to have larger numbers of
parents. For instance, extending TAN structures by allowing for two additional parents would
be a natural next step.
Furthermore, other NAS techniques, such as reinforcement learning based approaches, are

worthy of investigation. For DNNs, reinforcement learning based NAS is typically limited by
long training times. Since BNs are usually applied to smaller datasets and training takes less
time, the original limiting factors of these NAS approaches become less severe.
Future work for quantization includes mixed-precision quantization with individual bit widths

at various levels (e.g., per CPT). Furthermore, optimizing the numbers of integer bits BI and
fractional bits BF using the STE similar as in [128] would be an important contribution. Cur-
rently, these hyperparameters are tuned using an extensive grid search.

– 157 –

Probabilistic Methods for Resource Efficiency in Machine Learning

8
Conclusions and Outlook

In this thesis, we investigated probabilistic methods to obtain resource-efficient machine learning
models. The main work horse of this thesis are DNNs which are currently the predominantly
used models in the context of machine learning. After starting with a basic introduction of
DNNs and methods for training them, we have shown how the Bayesian framework can be used
to equip DNNs with a proper probabilistic interpretation. Whereas the resulting Bayesian DNNs
are commonly appreciated for their capability of producing prediction uncertainties—i.e., they
know what they (don’t) know—, we slightly deviated from the conventional path and devel-
oped probabilistic methods to obtain resource-efficient models. This resulted in three particular
contributions whose origins can, to varying degrees, be traced back to Bayesian modeling. The
first two contributions are specific to DNNs. The third contribution investigated whether recent
advances in deep learning are transferable to other model classes.
To fit our contributions into the rapidly growing literature, we provided an extensive overview

of the recent trends and methods of achieving resource efficiency in deep learning. We identified
three major research directions in this scientific field, i.e., quantized DNNs, network pruning,
and improving computational efficiency through structural properties. Quantization and pruning
approaches are mostly model agnostic and promising tools to reduce the complexity of any given
architecture. However, in the long run, it is most likely that structural considerations are key
to obtaining impressive accuracies with significantly smaller models. This is at least suggested
by a recurring pattern in the evolution of modern DNN architectures: Initially, some incredibly
large architectures pave the way towards new state-of-the-art performances. Subsequently, these
performances are also achieved by much smaller DNNs at whose core we can find simple but well-
conceived new building blocks. While until recently such novel building blocks were manually
designed, the emerging field of NAS appears to be a promising candidate to automate this
process. We believe that NAS will be of high practical relevance in the future especially due to
its capability of discovering application and hardware-specific structures.
We contributed to the resource efficiency literature with our methods presented in Chapters

5, 6, and 7. In the remainder, we review the most important findings of our contributions before
we provide (what we believe to be) promising directions of future research. For an in-depth
discussion of the individual contributions, we refer to the discussion sections at the end of the
individual chapters.

Chapter 5: In Chapter 5, we presented a method that is closely related to variational in-
ference—a commonly used technique for approximate Bayesian inference. In particular, we
introduced a method to train discrete distributions over the weights of a DNN. Once training of
the discrete weight distributions has finished, we infer concrete weights from those distributions
either by taking their most probable weights or by sampling from them. Training discrete
distributions has the advantage that we can perform gradient-based optimization. Importantly,
this holds true even for discrete activations functions. We utilized this freedom to train DNNs
with the binary sign activation function, and we evaluated ternary, quaternary, and quinary
weights.

Our method supports arbitrary numbers of discrete weight values which extends previous
works that are tailored to binary and ternary weights. This is accomplished by introducing new

– 159 –

8 Conclusions and Outlook

parameterization and initialization schemes for the weight distributions. Moreover, by introduc-
ing a distribution-aware max pooling approximation, we extend previous works that take the
distribution only indirectly into account. Our experiments show that our new components, pa-
rameterization and max pooling approximation, facilitate training and result in higher accuracy.
By increasing the number of discrete weight values, we can increase the expressiveness of a

discrete-valued DNN. In this way, we are able to trade off between computational costs and accu-
racy. On the evaluated datasets, our method improved in most cases when more discrete weight
values were used. By averaging predictions of a varying number of DNNs sampled from the
weight distributions, our method provides another means of trading off between computational
costs and accuracy.
We observed that a proper initialization method is crucial to obtain state-of-the-art perfor-

mances. Our initialization method (similar as in previous works) is based on a pre-trained
real-valued DNN. We found that the ReLU activation resulted in higher accuracies than tanh
when used during pre-training. This is somewhat surprising since the functional shapes of ReLU
and the ultimately used sign function are rather different.

Chapter 6: Our second method proposed in Chapter 6 builds upon sampling methods—the
second pillar of approximate Bayesian inference besides variational inference. In this work, we
introduced a DP on top of the weight prior of Bayesian DNNs. This results in a weight sharing
that is subsequently exploited to drastically reduce the number of parameters of an ensemble
of DNNs. Although being a theoretically elegant solution to achieve weight sharing in DNNs,
several computational challenges arise in practice. To make sampling based posterior inference
feasible, we introduced several approximations and algorithmic techniques.
In our experiments, we demonstrated that our method is capable of substantially reducing the

number of parameters of an ensemble. Our method outperforms DNNs with randomly shared
weights in most experiments. In some cases our method even outperforms DNNs without weight
sharing which indicates a regularizing effect. By varying the DP parameter αdp, our method
allows us to trade off between the number of parameters and the accuracy. Especially for very
few parameters our method substantially outperforms randomly shared weights.

Chapter 7: Our last contribution presented in Chapter 7 addresses the question whether
recent advances in (resource-efficient) deep learning are transferable to other model classes. We
positively answered this question for BN classifiers with naïve Bayes and TAN structures. For
this purpose, we considered two particular methods, i.e., (i) structure learning and (ii) parameter
quantization.
Our structure learning approach is closely related to recently proposed differentiable NAS

techniques. The proposed method allows us to jointly train the BN parameters and its TAN
structure by means of gradient-based optimization. This is accomplished by introducing a
discrete distribution over TAN structures and minimizing an expected loss with respect to
this distribution. Once the distribution has been trained, the most probable TAN structure
is selected. The method can be easily implemented using modern automatic differentiation
frameworks and does not require combinatorial optimization techniques such as greedy hill
climbing. By incorporating a model size penalty to the loss, various trade offs between accuracy
and model size can be obtained.
For parameter quantization, we perform quantization-aware training using the STE. The

STE replaces the zero gradient of quantization functions by the non-zero gradient of a different
function of similar shape. In this way, the continuous parameters can be updated using gradient-
based learning. Once training has finished, only the quantized parameters are kept.
We demonstrated the effectiveness of our approaches in extensive experiments. The discovered

TAN structures consistently outperform random TAN structures and generatively trained Chow-
Liu TAN structures. Using a heuristic variable ordering and parent subset selection for image

– 160 –

8.1 Limitations and Future Work

data, we were able to further improve the performance. We showed that the model size penalty
allows us to obtain various trade-offs between model size and accuracy, ranging from the naïve
Bayes structure to unconstrained TAN structures. We observed that slightly increasing the
model size can yield substantial gains in accuracy.

In extensive quantization experiments, we showed that quantization-aware training is a highly
effective method to trade off between parameter bit width and accuracy. Our method outper-
forms a specialized branch-and-bound algorithm tailored to parameter quantization. We con-
ducted a comprehensive comparison of quantized BNs with quantized small-scale DNNs. Our
experiments show that both model classes offer benefits in different regimes of computational
efficiency and model accuracy. In particular, BN classifiers require few operations and achieve
decent accuracy, CNNs are memory efficient and achieve the lowest error at the cost of many
operations, and fully connected DNNs provide flexible trade-offs. We emphasize that our ex-
periments demonstrate the effectiveness of quantization-aware training for small-scale DNNs.
Therefore, our work also closes a gap in the vast DNN quantization literature which is mostly
concerned with large architectures and datasets. In summary, our work shows that other areas
of machine learning might benefit as well from recent advances in deep learning.

8.1 Limitations and Future Work
In the following, we discuss limitations of our contributions and (what we believe to be) promising
directions of future research. Again, we refer to the discussion sections of the individual chapters
for a thorough treatment of the limitations of the individual topics.

Chapter 5: Our method for learning discrete-valued DNNs in Chapter 5 relies crucially on the
initialization with a pre-trained real-valued DNN. However, there are several open questions that
should be addressed by future work. Several experiments using different pre-training conditions
produced mixed results and it remains mostly unclear what properties of a pre-trained DNN
are responsible for the final accuracy. Furthermore, it is not fully understood why the ReLU
activation is suitable to initialize a DNN with sign activations. Related to this is understanding
the role of batch normalization and dropout for successful pre-training and initialization. Due
to the necessity of pre-training, our method can, to a certain extent, also be seen as an instance
of transfer learning or knowledge distillation. Future work should investigate whether more
sophisticated techniques from these areas are applicable to facilitate training.
Our method introduces non-negligible computational overhead during training. This might

be prohibitive for very large architectures and datasets such as ImageNet. Therefore, increas-
ing scalability of the proposed method would be an important contribution. Exploring other
parameterizations of the weight distributions, especially by directly parameterizing the weight
mean and the weight variance, might result in a better behaved loss surface. At the same time,
such parameterizations might also reduce the computational overhead during training.
In some of our experiments, we observed mixed behavior for different discrete weight types.

For instance, there is no explicit zero weight for quaternary weights which might be a limi-
tation. Future work should investigating other types of (non-symmetric) discrete weights and
weights with trainable quantization levels. Finally, we did not evaluate the quality of prediction
uncertainties obtained from the trained distributions.

Chapter 6: The major drawback of our DP based weight sharing scheme presented in Chapter
6 is its limitation to small architectures and small to medium sized datasets. Furthermore, the
method does not easily generalize to other architectures such as CNNs and RNNs. We believe
that more global approximation schemes based on low order Taylor approximations (similar as
in [83]) are promising to achieve this. While our method is tailored to ensembles of DNNs, it is

– 161 –

8 Conclusions and Outlook

worthy to explore how individual DNNs can benefit from a DP based weight sharing. Assuming
that the computational challenges have been solved, a variation of the proposed method might
be a viable alternative to other clustering based weight sharing schemes such as k-means (e.g.,
see [144]). Finally, a Bayesian treatment of the hyperparameters by introducing another level
to the Bayesian hierarchy could reduce the influence of the fixed hyperparameters.

Chapter 7: The proposed structure learning approach assumes a fixed variable ordering. Fur-
thermore, if the number of variables is large, our method is restricted to selecting a subset of
possible parents. Both of these choices restrict the space of TAN structures under consideration,
and our experiments show that these choices affect the final accuracy. For the variable order-
ing, we identified heuristic orderings and continuous optimization techniques to avoid cycles as
potential solutions. For the parent subset selection, we identified heuristic selection strategies
and shared parameter representations as promising solutions. Shared parameter representa-
tions might also serve to eliminate sparse gradients, potentially resulting in improved learning
behavior. We believe that the presented structure learning techniques are not limited to TAN
structures, and extending our method to other BN structures is an interesting direction of future
research.
For our quantization approach, the extension to mixed-precision quantization is a natural next

step. Furthermore, continuous optimization of the numbers of integer and fractional bits using
the STE would eliminate the need to perform an extensive hyperparameter search.

– 162 –

Probabilistic Methods for Resource Efficiency in Machine Learning

9
List of Publications

J. Rock, W. Roth, M. Toth, P. Meissner, and F. Pernkopf; Resource-Efficient Deep Neural
Networks for Automotive Radar Interference Mitigation; In: IEEE Journal of Selected Topics in
Signal Processing; vol. 15 (4), pp. 927–940, 2021

W. Roth, G. Schindler, H. Fröning, and F. Pernkopf; On Resource-Efficient Bayesian Network
Classifiers and Deep Neural Networks; In: International Conference on Pattern Recognition;
pp. 10297–10304, 2020

D. Peter, W. Roth, and F. Pernkopf; Resource-efficient DNNs for Keyword Spotting using
Neural Architecture Search and Quantization; In: International Conference on Pattern Recog-
nition; pp. 9273–9279, 2020

M. Huber, G. Schindler, W. Roth, H. Fröning, C. Schörkhuber, and F. Pernkopf; Towards Real-
Time Single-Channel Singing-Voice Separation with Pruned Multi-Scaled DenseNets; In: IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP); pp. 806–810,
2020

L. Pfeifenberger, M. Zöhrer, W. Roth, G. Schindler, H. Fröning, and F. Pernkopf; Resource-
Efficient Speech Mask Estimation for Multi-Channel Speech Enhancement; arXiv: abs/2007.11477,
2020

J. Rock, W. Roth, P. Meissner, and F. Pernkopf; Quantized Deep Neural Networks for Radar
Interference Mitigation; In: European Conference on Machine Learning - ITEM Workshop; 2020

W. Roth and F. Pernkopf; Differentiable TAN Structure Learning for Bayesian Network Classi-
fiers; In: International Conference on Probabilistic Graphical Models (PGM); pp. 389–400, 2020

G. Schindler, W. Roth, F. Pernkopf, and H. Fröning; Parameterized Structured Pruning for
Deep Neural Networks; In: International Conference on Machine Learning, Optimization, and
Data Science (LOD); pp. 16–27, 2020

W. Roth, G. Schindler, M. Zöhrer, L. Pfeifenberger, R. Peharz, S. Tschiatschek, H. Fröning,
F. Pernkopf, and Z. Ghahramani, Resource-Efficient Neural Networks for Embedded Systems;
arXiv: abs/2001.03048, 2020

W. Roth and F. Pernkopf; Bayesian Neural Networks with Weight Sharing Using Dirichlet
Processes; In: IEEE Transactions on Pattern Analysis and Machine Intelligence; vol. 42 (1),
pp. 246–252, 2020

W. Roth, G. Schindler, H. Fröning, and F. Pernkopf; Training Discrete-Valued Neural Net-
works with Sign Activations Using Weight Distributions; In: European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD);

– 163 –

9 List of Publications

pp. 382–398, 2019

B. K. Aichernig, R. Bloem, M. Ebrahimi, M. Horn, F. Pernkopf, W. Roth, A. Rupp, M. Tap-
pler, and M. Tranninger; Learning a Behavior Model of Hybrid Systems Through Combining
Model-Based Testing and Machine Learning; In: International Conference on Testing Software
and Systems (ICTSS); pp. 3–21, 2019

W. Roth, R. Peharz, S. Tschiatschek, and F. Pernkopf; Hybrid Generative-Discriminative
Training of Gaussian Mixture Models; In: Pattern Recognition Letters; vol. 112, pp. 131–137,
2018

W. Roth and F. Pernkopf; Variational Inference in Neural Networks using an Approximate
Closed-Form Objective; In: Conference on Neural Information Processing Systems, Workshop
on Bayesian Deep Learning; 2016

F. B. Pokorny, R. Peharz,W. Roth, M. Zöhrer, F. Pernkopf, P. B. Marschik, and B. W. Schuller;
Manual Versus Automated: The Challenging Routine of Infant Vocalisation Segmentation in
Home Videos to Study Neuro(mal)development; In: Interspeech - International Conference on
Spoken Language Processing; pp. 2997–3001, 2016

– 164 –

Probabilistic Methods for Resource Efficiency in Machine Learning

A
Datasets

The following datasets were used for our own experiments throughout the thesis. We provide
descriptions of the datasets in their default settings. Whenever we deviate from this default
setting, we state this explicitly in the relevant experimental context.

A.1 MNIST
The MNIST dataset [228] contains grayscale images of size 28×28 pixels showing handwritten
digits from 0–9. The training set contains 60,000 images and the test set contains 10,000 images.
We split the training set into a training set of 50,000 training images and 10,000 validation
images. We normalize the pixels to be in the range [−1, 1].
We consider two settings for the MNIST dataset. (i) In the permutation-invariant (PI) setting

each pixel is treated as independent feature. In this setting it is not allowed to exploit the
image structure and to take pixel locality into account, i.e., CNNs are not allowed. (ii) In the
unconstrained setting we keep the image structure and use CNNs.
Some examples of the dataset are shown in Figure A.1(a). The MNIST dataset is used in

Chapters 5, 6, and 7. In Chapter 5 and Chapter 7, we conduct experiments using both settings
(i) and (ii). In Chapter 6, we only conduct experiments for the permutation-invariant setting.
To distinguish between the two settings in Chapter 5, we refer to the permutation-invariant
setting as MNIST (PI). In Chapter 7, we do not make the setting explicit and it should be clear
from the context which setting is being used.

A.2 Variants of MNIST
To obtain more challenging datasets, the MNIST dataset has been transformed by various
operations [229]. In particular, there are the following variants:

• MNIST-basic: This dataset has not been transformed. The dataset is merely split differ-
ently into training, validation, and test set (see below).

• MNIST-bg (background): The background pixels of the images are replaced by random
image patches.

• MNIST-bg-rnd (background random): The background pixels of the images are set to
uniformly distributed random pixel values.

• MNIST-rot (rotated): The images are randomly rotated.

• MNIST-rot-bg (rotated background): The transformations of MNIST-rot and MNIST-bg
are combined.

Compared to the original MNIST dataset, the variants of MNIST exhibit a different splitting
into training, validation, and test set. In particular, there are 10,000 training samples, 2,000

– 165 –

A Datasets

validation samples, and 50,000 test samples. The remaining attributes (image size, normaliza-
tion) are equivalent to the original MNIST dataset. We only perform experiments using the
permutation-invariant setting on these datasets.
Some examples of these datasets are shown in Figures A.1(a)–A.1(e). The variants of the

MNIST dataset are used in Chapter 6.

A.3 Cifar-10 and Cifar-100
The Cifar-10 dataset [230] contains 32×32 pixel RGB images showing objects from ten different
categories. The dataset contains 50,000 training images and 10,000 test images. We split the
training set into 45,000 training images and 5,000 validation images. The pixels are normalized
to be in the range [−1, 1]. Cifar-100 is similar to Cifar-10 except that the task is to assign an
image to one of 100 object categories.
Some examples of the Cifar-10 and the Cifar-100 datasets are shown in Figure A.1(f) and

Figure A.1(g), respectively. We conduct experiments on the Cifar-10 and the Cifar-100 dataset
in Chapter 5.

A.4 SVHN
The SVHN dataset [231] contains 32×32 pixel RGB images showing picture sections of house
numbers that need to be classified to the digits 0–9. The dataset is split into 604,388 training
images and 26,032 test images. We follow the procedure of [232] to split the training set into
598,388 training images and 6,000 validation images. Once again, we normalize pixels to be in
the range [−1, 1].

Some examples of the SVHN dataset are shown in Figure A.1(h). We conduct experiments
on the SVHN dataset in Chapter 5.

A.5 USPS
The USPS dataset contains 16×16 grayscale images showing handwritten digits from 0–9 [233,
234]. The images were extracted from zip codes of mail envelopes. We consider the dataset in
the permutation-invariant and the unconstrained setting (see also Appendix A.1). It should be
clear from the context which of these settings is used.
We use the particular dataset from [209] containing 11,000 images. In their version of the

dataset, the features have been discretized according to the method from [223]. We split the
data into two thirds of training samples (i.e., 7,340) and one third of test samples (i.e., 3,660).
Some examples of the USPS dataset are shown in Figure A.1(i). We conduct experiments on

the USPS dataset in Chapter 7.

A.6 UCI Datasets for Classification
We used the following classification datasets from the UCI repository [235] for our experiments
in Chapter 7.

A.6.1 Letter
The Letter dataset [236] contains 20,000 samples, describing one of 26 English letters using 16
numerical features (statistical moments and edge counts) extracted from images. We split the
data into two thirds of training samples (i.e., 13,342) and one third of test samples (i.e., 6,658).

– 166 –

A.6 UCI Datasets for Classification

(a) MNIST / MNIST-basic

(b) MNIST-bg (background)

(c) MNIST-bg-rnd (background random)

(d) MNIST-rot (rotated)

(e) MNIST-rot-bg (rotated background)

(f) Cifar-10

(g) Cifar-100

(h) SVHN

(i) USPS

Figure A.1: Examples of the benchmark image classification datasets used in this thesis.

– 167 –

A Datasets

A.6.2 Satimage
The Satimage dataset consists of 6,435 samples containing multispectral values of 3 × 3 pixel
neighborhoods in satellite images, resulting in a total of 36 features. The task is to classify the
central pixel of these image patches to one of the six categories red soil, cotton crop, gray soil,
damp gray soil, soil with vegetation stubble, and very damp gray soil. Since this dataset is
rather small, we perform 5-fold cross-validation to estimate the test error.

A.7 UCI Datasets for Regression
We used several regression datasets from the UCI repository [235] for our experiments in Chapter
6. The task of each dataset is to predict a continuous scalar target variable. Since these
datasets are rather small, the test errors and test log-likelihoods are estimated using 5-fold
cross-validation.

A.7.1 Abalone
The Abalone dataset [237] contains 4,177 samples. The task is to predict the age of an abalone
using eight measured attributes, i.e., the sex, three length attributes, and four weight attributes.
The actual age is obtained by cutting the shell and counting rings through a microscope.

A.7.2 Boston Housing
The Boston Housing dataset [238] (or, in short, Housing) contains 506 samples. The task is to
predict the median value of owner-occupied homes in suburbs of Boston. Each sample consists of
13 features containing information about a particular suburb, e.g., per capita crime rate, nitric
oxides concentration, and pupil-teacher ratio.

A.7.3 Concrete Compressive Strength
The Concrete Compressive Strength dataset [239] (or, in short, Concrete) contains 1,030 samples.
The task is to predict the concrete compressive strength from eight features, i.e., the age and
seven attributes describing the mass of certain ingredients per cubic meter. The actual concrete
compressive strength was determined in a laboratory.

A.7.4 Combined Cycle Power Plant
The Combined Cycle Power Plant dataset [240] (or, in short, Power Plant) contains 9,568
samples. The task is to predict the net hourly electrical energy output of the power plant from
four average hourly measurements, i.e., ambient temperature, atmospheric pressure, relative
humidity, and vacuum (exhaust steam pressure).

A.7.5 Wine Quality
There are two versions of the Wine Quality dataset [241], both of which exhibit the same data
format. (i) The red wine version (referred to as WineQ-red) contains 1,599 samples and (ii) the
white wine version (referred to as WineQ-white) contains 4,898 samples. The task is to predict
the wine quality obtained by expert ratings based on eleven measurements, e.g., alcohol, pH
value, and sulfates.

– 168 –

Probabilistic Methods for Resource Efficiency in Machine Learning

B
Useful Calculations

B.1 Full Covariance Gaussian Approximation of the Activation
Distribution

We derive a Gaussian approximation for the activations al of layer l given the inputs xl−1 from
the previous layer and a weight matrix Wl. We assume that the inputs xl−1 are independent
from the weights Wl. Furthermore, we assume that the individual weights wi,k are independent.
The activation ali is computed as

ali =
∑
k

wli,kx
l−1
k . (B.1)

The mean E[ali] of the Gaussian approximation is given by

E[ali] =
∑
k

E[wli,k]E[xl−1
k]. (B.2)

To compute the covariance cov(ali, alj), we first determine the covariance of individual summands.
These are given as

cov(wli,kxl−1
k , wlj,k′ x

l−1
k′) = E[(wli,kxl−1

k − E[wli,kxl−1
k])(wlj,k′ xl−1

k′ − E[wlj,k′ xl−1
k′])] (B.3)

= E[wli,kxl−1
k wlj,k′ x

l−1
k′]− E[wli,k]E[xl−1

k]E[wlj,k′]E[xl−1
k′] (B.4)

= E[wli,kwlj,k′]E[xl−1
k xl−1

k′]− E[wli,k]E[xl−1
k]E[wlj,k′]E[xl−1

k′]. (B.5)

For i 6= j or k 6= k′, the term E[wli,kwlj,k′] factorizes into E[wli,k]E[wlj,k′]. For i = j and k = k′, we
obtain E[(wli,k)2] = E[wli,k]E[wlj,k′] +V[wli,k], in which case we have to take care of the additional
variance term V[wli,k]. Using this observation and by factorizing out common terms, we obtain

cov(wli,kxl−1
k , wlj,k′ x

l−1
k′) (B.6)

= E[wli,k]E[wlj,k′]
(
cov(xl−1

k , xl−1
k′)

)
+ I[i = j]I[k = k′]V[wli,k]E[(xl−1

k)2]. (B.7)

We can now compute cov(ali, alj) as

cov
(
ali, a

l
j

)
= cov

(∑
k

wli,kx
l−1
k ,

∑
k′

wlj,k′ x
l−1
k′

)
=
∑
k

∑
k′

cov
(
wli,kx

l−1
k , wlj,k′ x

l−1
k′

)
(B.8)

=
∑
k

∑
k′

E[wli,k]E[wlj,k′]cov(xl−1
k , xl−1

k′) + I[i = j]
∑
k

V[wli,k]E[(xl−1
k)2]. (B.9)

– 169 –

B Useful Calculations

B.2 Expectation of a Quadratic Form with respect to a Gaussian
We derive an exact solution for the expectation of a quadratic form with respect to a Gaussian
in D dimensions. Let H ∈ RD×D. We have

Eu∼N (µ,Σ)[(u− ũ)>H(u− ũ)] =
D∑
i=1

D∑
j=1

Hi,jEu∼N (µ,Σ)[(ui − ũi)(uj − ũj)] (B.10)

=
D∑
i=1

D∑
j=1

Hi,jEu∼N (µ,Σ)[(uiuj − uiũj − ũiuj + ũiũj)] (B.11)

=
D∑
i=1

D∑
j=1

Hi,j [(Σi,j + µiµj − µiũj − ũiµj + ũiũj)] (B.12)

=
D∑
i=1

D∑
j=1

Hi,jΣi,j +Hi,j(µi − ũi)(µj − ũj) (B.13)

= tr(H>Σ) + (µ− ũ)>H(µ− ũ), (B.14)

where tr(·) denotes the trace of a square matrix, i.e., the sum of its diagonal entries, and we
used the identity E[uiuj] = cov(ui, uj) + E[ui]E[uj] in (B.12).
We can also use (B.14) to approximate the expectation of non-quadratic functions f(u). For

this purpose, we first approximate the non-quadratic function f(u) by its second-order Taylor
approximation around the mean µ as

f(u) ≈ f̃(u) = f(µ) + (u− µ)>g + 1
2 (u− µ)>H (u− µ) (B.15)

with the respective gradient and Hessian matrix

g = ∇uf(u)|u=µ and H = ∇2
uf(u)

∣∣∣
u=µ

. (B.16)

The expectation E[f(u)] is then approximated by E[f̃(u)] using (B.14). This yields

Eu∼N (µ,Σ)[f̃(u)] = f(µ) + 1
2 tr(H>Σ). (B.17)

Note that the linear term in (B.15) and the second term in (B.14) have vanished due to the
particular choice of performing the Taylor expansion around µ. A simpler approximation is
obtained by assuming that any of H or Σ is diagonal. In this case, (B.17) simplifies to

Eu∼N (µ,Σ)[f̃(u)] = f(µ) + 1
2

D∑
i=1

Hi,iΣi,i. (B.18)

We emphasize that a second-order Taylor approximation f̃(u) might produce values that are not
in the image of the original function f(u). For instance, a second-order Taylor approximation of
sigm(u) produces values outside the interval (0, 1) and, therefore, the approximated expectation
according to (B.17) might not be meaningful.

B.3 Approximating the Logistic Sigmoid by a Gaussian CDF
We can approximate

sigm(u) ≈ Φ(c̃u) (B.19)

– 170 –

B.4 Approximating the Squared Logistic Sigmoid by a Logistic Sigmoid

by matching the derivatives at u = 0. The derivatives are given by

d

du
sigm(u)|u=0 = sigm(u) (1− sigm(u))|u=0 = 1

4 (B.20)

and

d

du
Φ(c̃u)|u=0 = c̃

[
d

du
Φ(u)

]
u=0

= c̃

[
d

du

∫ u

−∞

1√
2π

exp
(
−z

2

2

)
dz

]
u=0

= c̃√
2π

exp
(
−u

2

2

)∣∣∣∣∣
u=0

= c̃√
2π
. (B.21)

Equating (B.20) and (B.21) yields c̃ =
√
π/8.

B.4 Approximating the Squared Logistic Sigmoid by a Logistic
Sigmoid

The squared logistic sigmoid has a sigmoidal shape and, therefore, can be approximated by a
logistic sigmoid whose argument is linearly transformed [31] as

sigm(u)2 ≈ sigm(α̃(u− b̃)). (B.22)

One particular accurate way to perform the approximation is by matching the values and the
derivatives of sigm(u)2 and sigm(α̃(u − b̃)) at u0 = − log(

√
2 − 1) satisfying sigm(u0)2 = 1/2.

By matching the values sigm(u0)2 and sigm(α̃(u0 − b̃)), we immediately obtain b̃ = u0 since
sigm(0) = 1/2.

In the next step, we match the derivatives at u0. Using sigm(u0) = 1/
√

2, we have

d

du
sigm(u)2|u=u0 = 2 sigm(u) sigm(u)(1− sigm(u))|u=u0 = 1− 1√

2
. (B.23)

The derivative of sigm(α̃(u− b̃)) for b̃ = u0 is given by

d

du
sigm(α̃(u− u0))|u=u0 = α̃ sigm(α̃(u− u0))(1− sigm(α̃(u− u0)))|u=u0 = α̃

4 . (B.24)

Equating (B.23) and (B.24) yields α̃ = 4− 2
√

2.

B.5 Convolving the Logistic Sigmoid with a Gaussian

The integral

Eu∼N (µ,σ)[sigm(u)] =
∫ ∞
−∞

sigm(u)N (u |µ, σ2)du (B.25)

does not admit an analytic solution. However, by replacing sigm(u) with the functionally similar
Gaussian cdf Φ(u), the integral has the analytic solution∫ ∞

−∞
Φ(c̃u)N (u |µ, σ2)du = Φ

(
µ√

c̃−2 + σ2

)
. (B.26)

– 171 –

B Useful Calculations

By applying approximation (B.19) on both sides of (B.26), we obtain the approximation∫ ∞
−∞

sigm(u)N (u |µ, σ2)du ≈ sigm
(

µ√
c̃−2 + σ2

· 1
c̃

)
= sigm

(
µ√

1 + c̃2σ2

)
(B.27)

for c̃ =
√
π/8. This approximation has been used, for instance, in [31, 242].

B.6 Convolving the Squared Logistic Sigmoid with a Gaussian

For the probabilistic forward pass, we require the computation of the raw second moment

Eu∼N (µ,σ2)[sigm(u)2] =
∫ ∞
−∞

sigm(u)2N (u |µ, σ2)du. (B.28)

Again, the resulting integral does not admit an analytic solution, but we can apply approximation
(B.22) to obtain

Eu∼N (µ,σ2)[sigm(u)2] ≈ Eu∼N (µ,σ2)[sigm(α̃(u− b̃))] (B.29)
= Ez∼N (0,1)[sigm(α̃((zσ + µ)− b̃))] (B.30)
= Ez∼N (0,1)[sigm(α̃σz + α̃(µ− b̃))] (B.31)
= Eũ∼N (α̃(µ−b̃),α̃2σ2)[sigm(ũ)]. (B.32)

Using (B.27), we obtain

Eu∼N (µ,σ2)[sigm(u)2] ≈ sigm
(

α̃(µ− b̃)√
1 + α̃2c̃2σ2

)
(B.33)

for α̃ = 4− 2
√

2, b̃ = − log(
√

2− 1), and c̃ =
√
π/8. This approximation has been used in [31].

B.7 Convolving the (Squared) Hyperbolic Tangent with a Gaussian

The integral

Eu∼N (µ,σ2)[tanh(u)] =
∫ ∞
−∞

tanh(u)N (u|µ, σ2)du (B.34)

does not admit an analytic solution, but we can resort to approximation (B.27) derived for the
logistic sigmoid by noting that tanh(u) = 2 sigm(2u)− 1. This yields

Eu∼N (µ,σ2)[tanh(u)] = 2Eu∼N (µ,σ2)[sigm(2u)]− 1 (B.35)
= 2Eũ∼N (2µ,4σ2)[sigm(ũ)]− 1 (B.36)

≈ 2 sigm
(2µ√

1 + 4c̃2σ2

)
− 1 = tanh

(
µ√

1 + 4c̃2σ2

)
. (B.37)

The squared hyperbolic tangent tanh(u)2 is not of a sigmoidal shape as it was the case for
sigm(u)2 and can thus not be modelled using a hyperbolic tangent itself. We can still resort to
results obtained for the logistic sigmoid by noting that tanh(u)2 = 4 sigm(2u)2− 4 sigm(2u) + 1.

– 172 –

B.8 Sampling from a Binary Gumbel-Softmax Distribution

Using (B.33) and (B.27), we obtain

Eu∼N (µ,σ2)[tanh(u)2] = Eu∼N (µ,σ2)[4 sigm(2u)2 − 4 sigm(2u) + 1] (B.38)
= Eu∼N (2µ,4σ2)[4 sigm(u)2 − 4 sigm(u) + 1] (B.39)

= 4 sigm
(

α̃(2µ− b̃)√
1 + 4α̃2c̃2σ2

)
− 4 sigm

(2µ√
1 + 4c̃2σ2

)
+ 1. (B.40)

B.8 Sampling from a Binary Gumbel-Softmax Distribution
We consider the Gumbel-softmax approximation for a binary distribution over the values {−1, 1}
defined by the probabilities p+1 = p(Z = 1) and p−1 = p(Z = −1). Expressions for other binary
values (e.g., {0, 1}) are obtained similarly. We are given a temperature τg and two samples
ε1, ε2 ∼ Gumbel(0, 1). For convenience, we define

ρ+1 = log(p+1) + ε1
τg

and ρ−1 = log(p−1) + ε2
τg

. (B.41)

A Gumbel-softmax sample z = (z+1, z−1) is then obtained by

z+1 = exp(ρ+1)
exp(ρ+1) + exp(ρ−1) and z−1 = exp(ρ−1)

exp(ρ+1) + exp(ρ−1) . (B.42)

A scalar-valued Gumbel-softmax sample is obtained by v = z+1 − z−1. This yields

exp(ρ+1)− exp(ρ−1)
exp(ρ+1) + exp(ρ−1) =

exp(ρ+1+ρ−1
2)

(
exp(ρ+1−ρ−1

2)− exp(ρ−1−ρ+1
2)

)
exp(ρ+1+ρ−1

2)
(
exp(ρ+1−ρ−1

2) + exp(ρ−1−ρ+1
2)

) (B.43)

= tanh
(
ρ+1 − ρ−1

2

)
(B.44)

= tanh
(

log(p+1) + ε1 − log(p−1)− ε2
2τg

)
. (B.45)

– 173 –

Probabilistic Methods for Resource Efficiency in Machine Learning

C
List of Acronyms

AHMC adaptive Hamiltonian Monte Carlo
BN Bayesian network
BNC Bayesian network classifier
BNN Bayesian neural network
cdf cumulative distribution function
CNN convolutional neural network
CPT conditional probability table
CPU central processing unit
CRP Chinese restaurant process
DNN deep neural network
DP Dirichlet process
DPP determinantal point process
GMM Gaussian mixture model
GPU graphics processing unit
HMC Hamiltonian Monte Carlo
KL Kullback-Leibler
LM large margin
LMC Langevin Monte Carlo
MAP maximum a posteriori
MCMC Markov chain Monte Carlo
MDL minimum description length
ML maximum likelihood
MS model size
MSE mean squared error
NAS neural architecture search
NB naïve Bayes
NLL negative log-likelihood
PCA principal component analysis
pdf probability density function
pmf probability mass function
RMSE root mean squared error
RNN recurrent neural network
SGD stochastic gradient descent
SGHMC stochastic gradient Hamiltonian Monte Carlo
SGLD stochastic gradient Langevin dynamics
SL structure learning

– 175 –

C List of Acronyms

STE straight-through gradient estimator
TAN tree-augmented naïve Bayes
TPU tensor processing unit

– 176 –

Probabilistic Methods for Resource Efficiency in Machine Learning

Bibliography

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis, “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L.
Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play,”
Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020, pp. 1877–1901.

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 211–252, 2015.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convo-
lutional neural networks,” in Advances in Neural Information Processing Systems (NIPS),
2012, pp. 1106–1114.

[7] U. von Luxburg and B. Schölkopf, “Statistical learning theory: Models, concepts, and
results,” in Inductive Logic, ser. Handbook of the History of Logic, vol. 10, 2011, pp. 651–
706.

[8] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are univer-
sal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research (JMLR), vol. 15, no. 56, pp. 1929–1958, 2014.

[10] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Learning Representations (ICLR), 2015.

[12] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differen-
tiation in machine learning: A survey,” Journal of Machine Learning Research (JMLR),
vol. 18, no. 153, pp. 1–43, 2017.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[14] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating gradients

through stochastic neurons for conditional computation,” 2013. arXiv: 1308.3432.

– 177 –

https://arxiv.org/abs/1308.3432

Bibliography

[15] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International Journal of Approx-
imate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[16] A. Shekhovtsov, V. Yanush, and B. Flach, “Path sample-analytic gradient estimators
for stochastic binary networks,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020, pp. 12 884–12 894.

[17] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks,” in International Conference on Learning
Representations (ICLR), 2014.

[18] D. Mishkin and J. Matas, “All you need is a good init,” in International Conference on
Learning Representations (ICLR), 2016.

[19] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in International Conference on Artificial Intelligence and Statistics
(AISTATS), vol. 9, 2010, pp. 249–256.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification,” in IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1026–1034.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet: A large-scale hi-
erarchical image database,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2009, pp. 248–255.

[22] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–
778.

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected con-
volutional networks,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2261–2269.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[26] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Advances
in Neural Information Processing Systems (NIPS), 2017, pp. 3856–3866.

[27] G. Desjardins, K. Simonyan, R. Pascanu, and K. Kavukcuoglu, “Natural neural net-
works,” in Advances in Neural Information Processing Systems (NIPS), 2015, pp. 2071–
2079.

[28] L. Huang, D. Yang, B. Lang, and J. Deng, “Decorrelated batch normalization,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 791–800.

[29] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in International Conference on Machine
Learning (ICML), 2008, pp. 1096–1103.

[30] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning,” in International Conference on Machine Learning (ICML),
vol. 48, 2016, pp. 1050–1059.

[31] S. I. Wang and C. D. Manning, “Fast dropout training,” in International Conference on
Machine Learning (ICML), vol. 28, 2013, pp. 118–126.

[32] S. Wager, S. I. Wang, and P. Liang, “Dropout training as adaptive regularization,” in
Advances in Neural Information Processing Systems (NIPS), 2013, pp. 351–359.

– 178 –

Bibliography

[33] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local reparam-
eterization trick,” in Advances in Neural Information Processing Systems (NIPS), 2015,
pp. 2575–2583.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International Conference on Machine Learning
(ICML), vol. 37, 2015, pp. 448–456.

[35] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural net-
works using DropConnect,” in International Conference on Machine Learning (ICML),
vol. 28, 2013, pp. 1058–1066.

[36] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “DropBlock: A regularization method for convo-
lutional networks,” in Advances in Neural Information Processing Systems (NeurIPS),
2018, pp. 10 750–10 760.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations (ICLR), 2015.

[38] M. Lin, Q. Chen, and S. Yan, “Network in network,” in International Conference on
Learning Representations (ICLR), 2014.

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception
architecture for computer vision,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 2818–2826.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in
European Conference on Computer Vision (ECCV), 2016, pp. 630–645.

[41] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transforma-
tions for deep neural networks,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 5987–5995.

[42] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neu-
ral networks,” in International Conference on Machine Learning (ICML), vol. 97, 2019,
pp. 6105–6114.

[43] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in
International Conference on Learning Representations (ICLR), 2017.

[44] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le, “Mnas-
Net: Platform-aware neural architecture search for mobile,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 2820–2828.

[45] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted residuals and linear bottlenecks,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 4510–4520.

[46] D. Hernandez and T. B. Brown, “Measuring the algorithmic efficiency of neural net-
works,” 2020. arXiv: 2005.04305.

[47] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and varia-
tional inference,” Foundations and Trends® in Machine Learning, vol. 1, no. 1–2, pp. 1–
305, 2008.

[48] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
ser. Adaptive Computation and Machine Learning. MIT Press, 2009.

[49] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. Springer New York, 2006.
[50] T. Minka, “Divergence measures and message passing,” Tech. Rep. MSR-TR-2005-173,

2005.

– 179 –

https://arxiv.org/abs/2005.04305

Bibliography

[51] Y. Li and R. E. Turner, “Rényi divergence variational inference,” in Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 1073–1081.

[52] D. Wang, H. Liu, and Q. Liu, “Variational inference with tail-adaptive f-divergence,” in
Advances in Neural Information Processing Systems (NeurIPS), 2018, pp. 5742–5752.

[53] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
[54] T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in Confer-

ence on Uncertainty in Artificial Intelligence (UAI), 2001, pp. 362–369.
[55] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[56] Z. Ghahramani and M. J. Beal, “Propagation algorithms for variational Bayesian learn-

ing,” in Advances in Neural Information Processing Systems (NIPS), 2000, pp. 507–513.
[57] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,”

Journal of Machine Learning Research (JMLR), vol. 14, no. 4, pp. 1303–1347, 2013.
[58] R. Ranganath, S. Gerrish, and D. M. Blei, “Black box variational inference,” in Inter-

national Conference on Artificial Intelligence and Statistics (AISTATS), 2014, pp. 814–
822.

[59] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in variational inference,”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 41,
no. 8, pp. 2008–2026, 2019.

[60] D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in Inter-
national Conference on Machine Learning (ICML), 2015, pp. 1530–1538.

[61] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshmi-
narayanan, “Normalizing flows for probabilistic modeling and inference,” 2019. arXiv:
1912.02762.

[62] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in International Con-
ference on Learning Representations (ICLR), 2014.

[63] R. M. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,” Depart-
ment of Computer Science, University of Toronto, Tech. Rep. CRG-TR-93-1, 1993.

[64] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their appli-
cations,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[65] R. M. Neal, “Slice sampling,” The Annals of Statistics, vol. 31, no. 3, pp. 705–741, 2003.
[66] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neu-

ral Computation, vol. 14, no. 8, pp. 1771–1800, 2002.
[67] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal of Machine

Learning Research (JMLR), vol. 3, pp. 993–1022, 2003.
[68] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings of the National

Academy of Sciences (PNAS), vol. 101, no. suppl 1, pp. 5228–5235, 2004.
[69] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,” Physics

Letters B, vol. 195, no. 2, pp. 216–222, 1987.
[70] R. M. Neal, “Bayesian training of backpropagation networks by the hybrid Monte Carlo

method,” Department of Computer Science, University of Toronto, Tech. Rep. CRG-TR-
92-1, 1992.

[71] R. H. Swendsen and J.-S. Wang, “Nonuniversal critical dynamics in Monte Carlo simu-
lations,” Physical Review Letters, vol. 58, pp. 86–88, 2 1987.

[72] Z. Wang, S. Mohamed, and N. de Freitas, “Adaptive Hamiltonian and Riemann manifold
Monte Carlo,” in International Conference on Machine Learning (ICML), vol. 28, 2013,
pp. 1462–1470.

– 180 –

https://arxiv.org/abs/1912.02762

Bibliography

[73] M. D. Hoffman and A. Gelman, “The No-U-Turn sampler: Adaptively setting path lengths
in Hamiltonian Monte Carlo,” Journal of Machine Learning Research (JMLR), vol. 15,
no. 47, pp. 1593–1623, 2014.

[74] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neu-
ral networks,” in International Conference on Machine Learning (ICML), 2015, pp. 1613–
1622.

[75] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight-sharing,”
Neural Computation, vol. 4, no. 4, pp. 473–493, 1992.

[76] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing neu-
ral networks with the hashing trick,” in International Conference on Machine Learning
(ICML), 2015, pp. 2285–2294.

[77] A. Y. K. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner, “’In-between’ uncer-
tainty in Bayesian neural networks,” in Workshop on Uncertainty & Robustness in Deep
Learning @ ICML, 2019.

[78] M. N. Gibbs, “Bayesian Gaussian processes for regression and classification,” PhD thesis,
University of Cambridge, 1997.

[79] A. Shekhovtsov and B. Flach, “Feed-forward propagation in probabilistic neural networks
with categorical and max layers,” in International Conference on Learning Representa-
tions (ICLR), 2019.

[80] W. Roth and F. Pernkopf, “Variational inference in neural networks using an approximate
closed-form objective,” in Workshop on Bayesian Deep Learning @ NIPS, 2016.

[81] Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational Bayesian inference
algorithm for latent Dirichlet allocation,” in Advances in Neural Information Processing
Systems (NIPS), 2006, pp. 1353–1360.

[82] F. Ribeiro and M. Opper, “Expectation propagation with factorizing distributions: A
Gaussian approximation and performance results for simple models,” Neural Computa-
tion, vol. 23, no. 4, pp. 1047–1069, 2011.

[83] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation: Parameter-free train-
ing of multilayer neural networks with continuous or discrete weights,” in Advances in
Neural Information Processing Systems (NIPS), 2014, pp. 963–971.

[84] J. M. Hernández-Lobato and R. P. Adams, “Probabilistic backpropagation for scalable
learning of Bayesian neural networks,” in International Conference on Machine Learning
(ICML), 2015, pp. 1861–1869.

[85] A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernández-Lobato, and A. L. Gaunt,
“Deterministic variational inference for robust Bayesian neural networks,” in Interna-
tional Conference on Learning Representations (ICLR), 2019.

[86] G. E. Hinton and D. van Camp, “Keeping the neural networks simple by minimizing
the description length of the weights,” in ACM Conference on Computational Learning
Theory (COLT), 1993, pp. 5–13.

[87] P. D. Grünwald, The minimum description length principle. MIT press, 2007.
[88] M. van Baalen, C. Louizos, M. Nagel, R. A. Amjad, Y. Wang, T. Blankevoort, and

M. Welling, “Bayesian bits: Unifying quantization and pruning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2020, pp. 5741–5752.

[89] A. Graves, “Practical variational inference for neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2011, pp. 2348–2356.

[90] M. Opper and C. Archambeau, “The variational Gaussian approximation revisited,” Neu-
ral Computation, vol. 21, no. 3, pp. 786–792, 2009.

– 181 –

Bibliography

[91] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte Carlo gradient estimation
in machine learning,” Journal of Machine Learning Research (JMLR), vol. 21, no. 132,
pp. 1–62, 2020.

[92] J. P. Kleijnen and R. Y. Rubinstein, “Optimization and sensitivity analysis of computer
simulation models by the score function method,” European Journal of Operational Re-
search, vol. 88, no. 3, pp. 413–427, 1996.

[93] P. W. Glynn, “Likelihood ratio gradient estimation for stochastic systems,” Communi-
cations of the ACM, vol. 33, no. 10, pp. 75–84, 1990.

[94] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

[95] J. W. Paisley, D. M. Blei, and M. I. Jordan, “Variational Bayesian inference with stochas-
tic search,” in International Conference on Machine Learning (ICML), 2012.

[96] M. K. Titsias and M. Lázaro-Gredilla, “Local expectation gradients for black box varia-
tional inference,” in Advances in Neural Information Processing Systems (NIPS), 2015,
pp. 2638–2646.

[97] A. B. Owen, Monte Carlo theory, methods and examples. 2013.
[98] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approx-

imate inference in deep generative models,” in International Conference on Machine
Learning (ICML), 2014, pp. 1278–1286.

[99] M. K. Titsias and M. Lázaro-Gredilla, “Doubly stochastic variational Bayes for non-
conjugate inference,” in International Conference on Machine Learning (ICML), 2014,
pp. 1971–1979.

[100] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with Gumbel-softmax,”
in International Conference on Learning Representations (ICLR), 2017.

[101] C. J. Maddison, A. Mnih, and Y. W. Teh, “The Concrete distribution: A continuous
relaxation of discrete random variables,” in International Conference on Learning Rep-
resentations (ICLR), 2017.

[102] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin dynam-
ics,” in International Conference on Machine Learning (ICML), 2011, pp. 681–688.

[103] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic gradient Hamiltonian Monte Carlo,”
in International Conference on Machine Learning (ICML), 2014, pp. 1683–1691.

[104] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of Markov Chain Monte
Carlo. CRC Press, 2011, ch. 5.

[105] R. Bardenet, A. Doucet, and C. C. Holmes, “Towards scaling up Markov chain Monte
Carlo: an adaptive subsampling approach,” in International Conference on Machine
Learning (ICML), vol. 32, 2014, pp. 405–413.

[106] A. Korattikara, Y. Chen, and M. Welling, “Austerity in MCMC land: Cutting the
Metropolis-Hastings budget,” in International Conference on Machine Learning (ICML),
vol. 32, 2014, pp. 181–189.

[107] W. Roth, G. Schindler, M. Zöhrer, L. Pfeifenberger, R. Peharz, S. Tschiatschek, H. Frön-
ing, F. Pernkopf, and Z. Ghahramani, “Resource-efficient neural networks for embedded
systems,” 2020. arXiv: 2001.03048.

[108] M. Höhfeld and S. E. Fahlman, “Learning with limited numerical precision using the
cascade-correlation algorithm,” IEEE Transactions on Neural Networks, vol. 3, no. 4,
pp. 602–611, 1992.

– 182 –

https://arxiv.org/abs/2001.03048

Bibliography

[109] ——, “Probabilistic rounding in neural network learning with limited precision,” Neuro-
computing, vol. 4, no. 6, pp. 291–299, 1992.

[110] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited
numerical precision,” in International Conference on Machine Learning (ICML), 2015,
pp. 1737–1746.

[111] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks with few mul-
tiplications,” in International Conference on Learning Representations (ICLR), 2016.

[112] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with low
precision multiplications,” in Workshop @ International Conference on Learning Repre-
sentations (ICLR), 2015.

[113] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization of deep con-
volutional networks,” in International Conference on Machine Learning (ICML), 2016,
pp. 2849–2858.

[114] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training deep neural
networks with binary weights during propagations,” in Advances in Neural Information
Processing Systems (NIPS), 2015, pp. 3123–3131.

[115] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural net-
works,” in Advances in Neural Information Processing Systems (NIPS), 2016, pp. 4107–
4115.

[116] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016. arXiv: 1605.04711.
[117] C. Zhu, S. Han, H. Mao, andW. J. Dally, “Trained ternary quantization,” in International

Conference on Learning Representations (ICLR), 2017.
[118] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet classifica-

tion using binary convolutional neural networks,” in European Conference on Computer
Vision (ECCV), 2016, pp. 525–542.

[119] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional neural network,”
in Advances in Neural Information Processing Systems (NIPS), 2017, pp. 345–353.

[120] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision by half-wave
Gaussian quantization,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017, pp. 5406–5414.

[121] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks using loga-
rithmic data representation,” 2016. arXiv: 1603.01025.

[122] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization: To-
wards lossless CNNs with low-precision weights,” in International Conference on Learning
Representations (ICLR), 2017.

[123] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and D.
Kalenichenko, “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2018, pp. 2704–2713.

[124] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-Real net: Enhancing
the performance of 1-bit CNNs with improved representational capability and advanced
training algorithm,” in European Conference on Computer Vision (ECCV), 2018, pp. 747–
763.

[125] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization for highly accu-
rate and compact deep neural networks,” in European Conference on Computer Vision
(ECCV), 2018, pp. 373–390.

– 183 –

https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1603.01025

Bibliography

[126] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M.Welling, “Relaxed quantization
for discretized neural networks,” in International Conference on Learning Representations
(ICLR), 2019.

[127] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “HAWQ: Hessian aware
quantization of neural networks with mixed-precision,” in IEEE International Conference
on Computer Vision (ICCV), 2019, pp. 293–302.

[128] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. Garcıa, S. Tiedemann, T. Kemp,
and A. Nakamura, “Mixed precision DNNs: All you need is a good parametrization,” in
International Conference on Learning Representations (ICLR), 2020.

[129] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha, “Learned
step size quantization,” in International Conference on Learning Representations (ICLR),
2020.

[130] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “DoReFa-Net: Training low bitwidth
convolutional neural networks with low bitwidth gradients,” 2016. arXiv: 1606.06160.

[131] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers in deep neural
networks,” in International Conference on Learning Representations (ICLR), 2018.

[132] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training quantized nets: A
deeper understanding,” in Advances in Neural Information Processing Systems (NIPS),
2017, pp. 5811–5821.

[133] A. G. Anderson and C. P. Berg, “The high-dimensional geometry of binary neural net-
works,” in International Conference on Learning Representations (ICLR), 2018.

[134] W. Roth, G. Schindler, H. Fröning, and F. Pernkopf, “On resource-efficient Bayesian
network classifiers and deep neural networks,” in International Conference on Pattern
Recognition (ICPR), 2020, pp. 10 297–10 304.

[135] J. Achterhold, J. M. Köhler, A. Schmeink, and T. Genewein, “Variational network quan-
tization,” in International Conference on Learning Representations (ICLR), 2018.

[136] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep learning,” in
Advances in Neural Information Processing Systems (NIPS), 2017, pp. 3288–3298.

[137] O. Shayer, D. Levi, and E. Fetaya, “Learning discrete weights using the local reparame-
terization trick,” in International Conference on Learning Representations (ICLR), 2018.

[138] J. W. T. Peters and M. Welling, “Probabilistic binary neural networks,” 2018. arXiv:
1809.03368.

[139] W. Roth, G. Schindler, H. Fröning, and F. Pernkopf, “Training discrete-valued neu-
ral networks with sign activations using weight distributions,” in European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), Part II, 2019, pp. 382–398.

[140] M. Havasi, R. Peharz, and J. M. Hernández-Lobato, “Minimal random code learning:
Getting bits back from compressed model parameters,” in International Conference on
Learning Representations (ICLR), 2019.

[141] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in Neural
Information Processing Systems (NIPS), 1989, pp. 598–605.

[142] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning: Optimal brain
surgeon,” in Advances in Neural Information Processing Systems (NIPS), 1992, pp. 164–
171.

[143] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for
efficient neural networks,” in Advances in Neural Information Processing Systems (NIPS),
2015, pp. 1135–1143.

– 184 –

https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1809.03368

Bibliography

[144] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural network
with pruning, trained quantization and Huffman coding,” in International Conference on
Learning Representations (ICLR), 2016.

[145] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient DNNs,” in Advances
in Neural Information Processing Systems (NIPS), 2016, pp. 1379–1387.

[146] Z. Mariet and S. Sra, “Diversity networks: Neural network compression using determinan-
tal point processes,” in International Conference on Learning Representations (ICLR),
2016.

[147] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks,” in Advances in Neural Information Processing Systems (NIPS), 2016,
pp. 2074–2082.

[148] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional
networks through network slimming,” in IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 2755–2763.

[149] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep neural networks,”
in European Conference on Computer Vision (ECCV), 2018, pp. 317–334.

[150] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for deep neural
network compression,” in IEEE International Conference on Computer Vision (ICCV),
2017, pp. 5068–5076.

[151] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks through L0
regularization,” in International Conference on Learning Representations (ICLR), 2018.

[152] Y. Li and S. Ji, “L0-ARM: Network sparsification via stochastic binary optimization,”
in European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), Part II, 2019, pp. 432–448.

[153] M. Yin and M. Zhou, “ARM: Augment-REINFORCE-merge gradient for stochastic bi-
nary networks,” in International Conference on Learning Representations (ICLR), 2019.

[154] D. Molchanov, A. Ashukha, and D. P. Vetrov, “Variational dropout sparsifies deep neu-
ral networks,” in International Conference on Machine Learning (ICML), vol. 70, 2017,
pp. 2498–2507.

[155] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 2181–2191.

[156] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more complicated network
with less inference complexity,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 1895–1903.

[157] X. Gao, Y. Zhao, L. Dudziak, R. D. Mullins, and C.-Z. Xu, “Dynamic channel pruning:
Feature boosting and suppression,” in International Conference on Learning Representa-
tions (ICLR), 2019.

[158] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural network compres-
sion,” in International Conference on Learning Representations (ICLR), 2017.

[159] W. Roth and F. Pernkopf, “Bayesian neural networks with weight sharing using Dirichlet
processes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 42, no. 1, pp. 246–252, 2020.

[160] X. Zeng and T. R. Martinez, “Using a neural network to approximate an ensemble of
classifiers,” Neural Processing Letters, vol. 12, no. 3, pp. 225–237, 2000.

[161] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2006,
pp. 535–541.

– 185 –

Bibliography

[162] J. Ba and R. Caruana, “Do deep nets really need to be deep?” In Advances in Neural
Information Processing Systems (NIPS), 2014, pp. 2654–2662.

[163] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size DNN with output-
distribution-based criteria,” in INTERSPEECH: Conference of the International Speech
Communication Association, 2014, pp. 1910–1914.

[164] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in
Deep Learning and Representation Learning Workshop @ NIPS, 2015.

[165] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fit-
Nets: Hints for thin deep nets,” in International Conference on Learning Representations
(ICLR), 2015.

[166] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: Network compression
via factor transfer,” in Advances in Neural Information Processing Systems (NeurIPS),
2018, pp. 2765–2774.

[167] A. K. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques to im-
prove low-precision network accuracy,” in International Conference on Learning Repre-
sentations (ICLR), 2018.

[168] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation and quanti-
zation,” in International Conference on Learning Representations (ICLR), 2018.

[169] M. Phuong and C. Lampert, “Distillation-based training for multi-exit architectures,” in
IEEE International Conference on Computer Vision (ICCV), 2019, pp. 1355–1364.

[170] A. Korattikara, V. Rathod, K. P. Murphy, and M. Welling, “Bayesian dark knowledge,”
in Advances in Neural Information Processing Systems (NIPS), 2015, pp. 3438–3446.

[171] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, “Predicting parameters
in deep learning,” in Advances in Neural Information Processing Systems (NIPS), 2013,
pp. 2148–2156.

[172] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural networks,”
in Advances in Neural Information Processing Systems (NIPS), 2015, pp. 442–450.

[173] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear struc-
ture within convolutional networks for efficient evaluation,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2014, pp. 1269–1277.

[174] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural networks
with low rank expansions,” in British Machine Vision Conference (BMVC), 2014.

[175] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky, “Speeding-
up convolutional neural networks using fine-tuned CP-decomposition,” in International
Conference on Learning Representations (ICLR), 2015.

[176] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. N. Choudhary, and S.-F. Chang, “An
exploration of parameter redundancy in deep networks with circulant projections,” in
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2857–2865.

[177] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. J. Smola, L. Song, and Z. Wang,
“Deep fried convnets,” in IEEE International Conference on Computer Vision (ICCV),
2015, pp. 1476–1483.

[178] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size,”
2016. arXiv: 1602.07360.

[179] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “MobileNets: Efficient convolutional neural networks for mobile vision
applications,” 2017. arXiv: 1704.04861.

– 186 –

https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861

Bibliography

[180] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient convolutional
neural network for mobile devices,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 6848–6856.

[181] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 8697–8710.

[182] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” in European Conference
on Computer Vision (ECCV), 2014, pp. 740–755.

[183] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware automated quan-
tization with mixed precision,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 8612–8620.

[184] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search on target
task and hardware,” in International Conference on Learning Representations (ICLR),
2019.

[185] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and D. Mar-
culescu, “Single-path NAS: Designing hardware-efficient convnets in less than 4 hours,”
in European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), Part II, 2019, pp. 481–497.

[186] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, “Mixed precision quan-
tization of convnets via differentiable neural architecture search,” 2018. arXiv: 1812.00090.

[187] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,” in
International Conference on Learning Representations (ICLR), 2019.

[188] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of network
pruning,” in International Conference on Learning Representations (ICLR), 2019.

[189] W. Roth and F. Pernkopf, “Differentiable TAN structure learning for Bayesian network
classifiers,” in International Conference on Probabilistic Graphical Models (PGM), 2020,
pp. 389–400.

[190] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong, M. Jahre, and
K. A. Vissers, “FINN: A framework for fast, scalable binarized neural network inference,”
in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),
2017, pp. 65–74.

[191] D. Sinha, H. Zhou, and N. V. Shenoy, “Advances in computation of the maximum of
a set of Gaussian random variables,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 8, pp. 1522–1533, 2007.

[192] S. Ahn, A. Korattikara, and M. Welling, “Bayesian posterior sampling via stochastic
gradient Fisher scoring,” in International Conference on Machine Learning (ICML), 2012,
pp. 1591–1598.

[193] C. Li, C. Chen, D. E. Carlson, and L. Carin, “Preconditioned stochastic gradient Langevin
dynamics for deep neural networks,” in AAAI Conference on Artificial Intelligence, 2016,
pp. 1788–1794.

[194] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,” Annals of Statis-
tics, vol. 1, no. 2, pp. 209–230, 1973.

[195] R. M. Neal, “Markov chain sampling methods for Dirichlet process mixture models,”
Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 249–265, 2000.

[196] D. Blackwell and J. B. MacQueen, “Ferguson distributions via Pólya urn schemes,” An-
nals of Statistics, vol. 1, no. 2, pp. 353–355, 1973.

– 187 –

https://arxiv.org/abs/1812.00090

Bibliography

[197] J. Sethuraman, “A constructive definition of Dirichlet priors,” Statistica Sinica, vol. 4,
no. 2, pp. 639–650, 1994.

[198] W. J. Ewens, “Population genetics theory - the past and the future,” in Mathematical and
Statistical Developments of Evolutionary Theory, S. Lessard, Ed. Springer Netherlands,
1990, pp. 177–227.

[199] C. E. Rasmussen, “The infinite Gaussian mixture model,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 1999, pp. 554–560.

[200] S. J. Gershman and D. M. Blei, “A tutorial on Bayesian nonparametric models,” Journal
of Mathematical Psychology, vol. 56, no. 1, pp. 1–12, 2012.

[201] S. Jain and R. M. Neal, “A split-merge Markov chain Monte Carlo procedure for the
Dirichlet process mixture model,” Journal of Computational and Graphical Statistics,
vol. 13, no. 1, pp. 158–182, 2004.

[202] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,”
Journal of the American Statistical Association, vol. 101, no. 476, pp. 1566–1581, 2006.

[203] D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet process mixtures,”
Bayesian Analysis, vol. 1, no. 1, pp. 121–143, 2006.

[204] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine
learning algorithms,” in Advances in Neural Information Processing Systems (NIPS),
2012, pp. 2960–2968.

[205] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM Journal
on Numerical Analysis, vol. 17, no. 2, pp. 238–246, 1980.

[206] J. Chang and J. W. F. III, “Parallel sampling of DP mixture models using sub-cluster
splits,” in Advances in Neural Information Processing Systems (NIPS), 2013, pp. 620–
628.

[207] W. Roth, R. Peharz, S. Tschiatschek, and F. Pernkopf, “Hybrid generative-discriminative
training of Gaussian mixture models,” Pattern Recognition Letters, vol. 112, pp. 131–137,
2018.

[208] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine
Learning, vol. 29, no. 2–3, pp. 131–163, 1997.

[209] S. Tschiatschek, K. Paul, and F. Pernkopf, “Integer Bayesian network classifiers,” in
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), Part III, 2014, pp. 209–224.

[210] F. Pernkopf, M. Wohlmayr, and S. Tschiatschek, “Maximum margin Bayesian network
classifiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 34, no. 3, pp. 521–532, 2012.

[211] R. Peharz, S. Tschiatschek, and F. Pernkopf, “The most generative maximum margin
Bayesian networks,” in International Conference on Machine Learning (ICML), vol. 28,
2013, pp. 235–243.

[212] D. Colombo and M. H. Maathuis, “Order-independent constraint-based causal structure
learning,” Journal of Machine Learning Research (JMLR), vol. 15, no. 116, pp. 3921–
3962, 2014.

[213] D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample learning of Bayesian net-
works is NP-hard,” Journal of Machine Learning Research (JMLR), vol. 5, pp. 1287–
1330, 2004.

[214] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The
combination of knowledge and statistical data,” Machine Learning, vol. 20, pp. 197–243,
1995.

– 188 –

Bibliography

[215] D. Grossman and P. M. Domingos, “Learning Bayesian network classifiers by maximiz-
ing conditional likelihood,” in International Conference on Machine Learning (ICML),
vol. 69, 2004.

[216] R. Peharz and F. Pernkopf, “Exact maximum margin structure learning of Bayesian
networks,” in International Conference on Machine Learning (ICML), 2012, pp. 1047–
1054.

[217] C. K. Chow and C. N. Liu, “Approximating discrete probability distributions with de-
pendence trees,” IEEE Transactions on Information Theory, vol. 14, no. 3, pp. 462–467,
1968.

[218] F. Pernkopf, M. Wohlmayr, and M. Mücke, “Maximum margin structure learning of
Bayesian network classifiers,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2011, pp. 2076–2079.

[219] F. Pernkopf and M. Wohlmayr, “Stochastic margin-based structure learning of Bayesian
network classifiers,” Pattern Recognition, vol. 46, no. 2, pp. 464–471, 2013.

[220] M. Teyssier and D. Koller, “Ordering-based search: A simple and effective algorithm
for learning Bayesian networks,” in Conference on Uncertainty in Artificial Intelligence
(UAI), 2005, pp. 584–590.

[221] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans, “Data perturbation for escaping
local maxima in learning,” in National Conference on Artificial Intelligence (AAAI),
2002, pp. 132–139.

[222] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes,” in Advances in Neural Information Processing
Systems (NIPS), 2001, pp. 841–848.

[223] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-valued attributes
for classification learning,” in International Joint Conference on Artificial Intelligence
(IJCAI), 1993, pp. 1022–1027.

[224] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing, “DAGs with NO TEARS: Contin-
uous optimization for structure learning,” in Advances in Neural Information Processing
Systems (NeurIPS), 2018, pp. 9472–9483.

[225] F. Pernkopf and J. A. Bilmes, “Efficient heuristics for discriminative structure learning
of Bayesian network classifiers,” Journal of Machine Learning Research (JMLR), vol. 11,
no. 81, pp. 2323–2360, 2010.

[226] Y. Shen, A. Choi, and A. Darwiche, “A new perspective on learning context-specific
independence,” in International Conference on Probabilistic Graphical Models (PGM),
2020, pp. 425–436.

[227] S. Bengio and Y. Bengio, “Taking on the curse of dimensionality in joint distributions
using neural networks,” IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 550–
557, 2000.

[228] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[229] H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio, “An empirical eval-
uation of deep architectures on problems with many factors of variation,” in International
Conference on Machine Learning (ICML), vol. 227, 2007, pp. 473–480.

[230] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of
Toronto, Tech. Rep., 2009.

– 189 –

Bibliography

[231] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in
natural images with unsupervised feature learning,” in Workshop on Deep Learning and
Unsupervised Feature Learning @ NIPS, 2011.

[232] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied to
house numbers digit classification,” in International Conference on Pattern Recognition
(ICPR), 2012, pp. 3288–3291.

[233] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd Edition, ser. Springer Series in Statistics. Springer,
2009.

[234] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel, “Handwritten digit recognition with a back-propagation network,” in
Advances in Neural Information Processing Systems (NIPS), 1989, pp. 396–404.

[235] D. Dua and C. Graff, UCI machine learning repository, http://archive.ics.uci.edu/ml, 2017.
[236] P. W. Frey and D. J. Slate, “Letter recognition using Holland-style adaptive classifiers,”

Machine Learning, vol. 6, pp. 161–182, 1991.
[237] S. G. Waugh, “Extending and benchmarking cascade-correlation: Extensions to the

cascade-correlation architecture and benchmarking of feed-forward supervised artificial
neural networks,” PhD thesis, University of Tasmania, 1995.

[238] D. Harrison and D. L. Rubinfeld, “Hedonic housing prices and the demand for clean air,”
Journal of Environmental Economics and Management, vol. 5, no. 1, pp. 81–102, 1978.

[239] I.-C. Yeh, “Modeling of strength of high-performance concrete using artificial neural
networks,” Cement and Concrete Research, vol. 28, no. 12, pp. 1797–1808, 1998.

[240] P. Tüfekci, “Prediction of full load electrical power output of a base load operated com-
bined cycle power plant using machine learning methods,” International Journal of Elec-
trical Power & Energy Systems, vol. 60, pp. 126–140, 2014.

[241] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine preferences by
data mining from physicochemical properties,” Decision Support Systems, vol. 47, no. 4,
pp. 547–553, 2009.

[242] D. J. C. MacKay, “The evidence framework applied to classification networks,” Neural
Computation, vol. 4, no. 5, pp. 720–736, 1992.

– 190 –

http://archive.ics.uci.edu/ml

	Statutory Declaration
	Acknowledgements
	Abstract
	1 Introduction
	1.1 Scope
	1.2 Contributions
	1.3 Outline
	1.4 Symbols and Notation

	2 Machine Learning and Deep Neural Networks
	2.1 Supervised Learning
	2.1.1 Training and Loss Function Minimization
	2.1.2 Gradient-Based Optimization
	2.1.3 Automatic Differentiation
	2.1.4 The Straight-Through Gradient Estimator

	2.2 Feed-Forward Deep Neural Networks
	2.2.1 The Basic Layout of Deep Neural Networks
	2.2.2 Training Deep Neural Networks
	2.2.3 Batch Normalization
	2.2.4 Dropout

	2.3 A Brief History of Deep Learning Architectures
	2.3.1 AlexNet
	2.3.2 VGGNet
	2.3.3 InceptionNet
	2.3.4 ResNet
	2.3.5 DenseNet
	2.3.6 EfficientNet

	3 Bayesian Deep Learning
	3.1 Bayesian Inference
	3.1.1 Example: The Exponential Family and Conjugate Priors
	3.1.2 Bayesian Networks

	3.2 Approximate Bayesian Inference
	3.2.1 Maximum Likelihood and Maximum A Posteriori Estimation
	3.2.2 Laplace's Method
	3.2.3 Variational Inference
	3.2.4 Sampling Methods

	3.3 Bayesian Deep Neural Networks
	3.3.1 Linearization of the Network Output
	3.3.2 The Probabilistic Forward Pass

	3.4 Bayesian Neural Networks Using Variational Inference
	3.4.1 A Closed-Form Approximation Using the Probabilistic Forward Pass
	3.4.2 Optimization Using Monte Carlo Gradients
	3.4.3 The Log-Derivative Trick
	3.4.4 The Reparameterization Trick
	3.4.5 The Gumbel-Softmax Approximation

	3.5 Bayesian Neural Networks Using Sampling
	3.5.1 Stochastic Gradient Langevin Dynamics
	3.5.2 Stochastic Gradient Hamiltonian Monte Carlo

	4 Resource-Efficient Deep Neural Networks
	4.1 Quantized Neural Networks
	4.1.1 Early Quantization Approaches
	4.1.2 Quantization-Aware Training
	4.1.3 Bayesian Approaches for Quantization

	4.2 Network Pruning
	4.2.1 Unstructured Pruning
	4.2.2 Structured Pruning
	4.2.3 Bayesian Approaches for Network Pruning
	4.2.4 Dynamic Network Pruning

	4.3 Structural Efficiency in Deep Neural Networks
	4.3.1 Weight Sharing
	4.3.2 Knowledge Distillation
	4.3.3 Special Matrix Structures
	4.3.4 Manual Architecture Design
	4.3.5 Neural Architecture Search (NAS)

	5 Learning Discrete-Valued Neural Networks Using Weight Distributions
	5.1 Training with Discrete Weight Distributions
	5.1.1 The Probabilistic Loss
	5.1.2 Relation to Variational Inference
	5.1.3 Optimizing the Probabilistic Loss

	5.2 Model Details
	5.2.1 Model Layout
	5.2.2 Batch Normalization for Gaussian Distributions
	5.2.3 Max Pooling for Gaussian Distributions
	5.2.4 Parameterization and Initialization of Weight Distributions

	5.3 Experiments
	5.3.1 Dataset Setups
	5.3.2 Classification Results
	5.3.3 Straight-Through Gumbel Estimator and Probabilistic Forward Pass
	5.3.4 Different Max Pooling Methods
	5.3.5 The Influence of Parameter Initialization and Dropout
	5.3.6 The Influence of the Distribution Parameterization
	5.3.7 The Influence of Batch Normalization
	5.3.8 Model Averaging

	5.4 Discussion
	5.4.1 Limitations and Future Work

	6 Weight Sharing Using Dirichlet Processes
	6.1 Dirichlet Processes: A Distribution over Distributions
	6.1.1 Dirichlet Process Mixtures
	6.1.2 Bayesian Inference for Dirichlet Process Mixtures

	6.2 Dirichlet Process Neural Networks
	6.2.1 Posterior Inference in Dirichlet Process Neural Networks
	6.2.2 Computational Tricks and Inference Complexity

	6.3 Experiments
	6.3.1 Classification Results
	6.3.2 Classification Results with Stochastic Gradient MCMC
	6.3.3 Regression Results
	6.3.4 Reducing the Number of Weights
	6.3.5 Benefit over Random Weight Sharing
	6.3.6 Running Time Experiments
	6.3.7 Different Interpolation Methods
	6.3.8 Influence of the Discretization Parameter

	6.4 Discussion
	6.4.1 Limitations and Future Work

	7 Resource-Efficient Bayesian Network Classifiers
	7.1 Bayesian Network Classifiers
	7.1.1 Naïve Bayes and Tree-Augmented Naïve Bayes (TAN) Structures
	7.1.2 Hybrid Generative-Discriminative Training
	7.1.3 Structure Learning for Bayesian Networks
	7.1.4 Relation between Bayesian Network Classifiers and Deep Neural Networks

	7.2 Differentiable TAN Structure Learning
	7.2.1 The Structure Learning Loss
	7.2.2 Minimizing the Structure Learning Loss
	7.2.3 Model-Size-Aware TAN Structure Learning

	7.3 Parameter Quantization for Bayesian Network Classifiers
	7.3.1 Quantization-Aware Bayesian Network Classifiers
	7.3.2 Quantization-Aware Deep Neural Networks

	7.4 Structure Learning Experiments
	7.4.1 Classification Results
	7.4.2 Heuristic Structures for Image Data
	7.4.3 Influence of the Feature Ordering and Parent Subsets
	7.4.4 Recovering the Chow-Liu Structure
	7.4.5 Model-Size-Aware TAN Structure Learning

	7.5 Quantization Experiments
	7.5.1 Fixed Parameter Memory Budget
	7.5.2 Fixed Number of Operations Budget
	7.5.3 Quantization for BN Classifiers
	7.5.4 Comparing Bayesian Network Classifiers and Deep Neural Networks

	7.6 Discussion
	7.6.1 Limitations and Future Work

	8 Conclusions and Outlook
	8.1 Limitations and Future Work

	9 List of Publications
	A Datasets
	A.1 MNIST
	A.2 Variants of MNIST
	A.3 Cifar-10 and Cifar-100
	A.4 SVHN
	A.5 USPS
	A.6 UCI Datasets for Classification
	A.6.1 Letter
	A.6.2 Satimage

	A.7 UCI Datasets for Regression
	A.7.1 Abalone
	A.7.2 Boston Housing
	A.7.3 Concrete Compressive Strength
	A.7.4 Combined Cycle Power Plant
	A.7.5 Wine Quality

	B Useful Calculations
	B.1 Full Covariance Gaussian Approximation of the Activation Distribution
	B.2 Expectation of a Quadratic Form with respect to a Gaussian
	B.3 Approximating the Logistic Sigmoid by a Gaussian CDF
	B.4 Approximating the Squared Logistic Sigmoid by a Logistic Sigmoid
	B.5 Convolving the Logistic Sigmoid with a Gaussian
	B.6 Convolving the Squared Logistic Sigmoid with a Gaussian
	B.7 Convolving the (Squared) Hyperbolic Tangent with a Gaussian
	B.8 Sampling from a Binary Gumbel-Softmax Distribution

	C List of Acronyms

